
EPICS Documentation

EPICS

Jan 17, 2024

CONTENTS

1 How this documentation is organized 3
1.1 Getting started with EPICS . 3
1.2 Installation Overview . 13
1.3 Installation on Linux / MacOS . 13
1.4 Installation on Windows . 18
1.5 EPICS Dependencies on CentOS 8 . 35
1.6 Cross compiling to an old x86 Linux system . 37
1.7 Creating an IOC Application . 43
1.8 EPICS applications on Mac OS X . 47
1.9 Configuring vxWorks 6.x . 47
1.10 Configuring Tornado/vxWorks 5.5.x . 50
1.11 Common Database patterns . 51
1.12 How to avoid copying arrays with waveformRecord . 52
1.13 Application Developer’s Guide . 56
1.14 How to Add a New Breakpoint Table . 234
1.15 EPICS Related Software . 235
1.16 How To Port EPICS to a new OS/Architecture . 241
1.17 PV Access repositories overview . 242
1.18 EPICS V4 Normative Types . 242
1.19 EPICS 7, pvAccess and pvData . 278
1.20 Overview of pvData implementation . 279
1.21 PVData structure definition . 280
1.22 IOC Access Security . 284
1.23 How to Configure Channel Access . 293
1.24 How to find which IOC provides a PV . 294
1.25 How to Make Channel Access Reach Multiple Soft IOCs on a Linux Host 297
1.26 How to Set Up a Soft IOC Framework on Linux . 299
1.27 How to Set Up Console Access and Logging for VME and Soft IOCs 309
1.28 PV Save and Restore Tools available . 315
1.29 Channel Access Protocol Specification . 316
1.30 IOC Initialization . 360
1.31 How to Work with the EPICS Repository . 369
1.32 Documentation contribution guide . 373
1.33 How to run an EPICS Collaboration Meeting . 377

i

ii

EPICS Documentation

The Experimental Physics and Industrial Control System (EPICS) comprises a set of software components and
tools that can be used to create distributed control systems. EPICS provides capabilities that are typically expected
from a distributed control system:

• Remote control & monitoring of facility equipment

• Automatic sequencing of operations

• Facility mode and configuration control

• Management of common time across the facility

• Alarm detection, reporting and logging

• Closed loop (feedback) control

• Modeling and simulation

• Data conversions and filtering

• Data acquisition including image data

• Data trending, archiving, retrieval and plotting

• Data analysis

• Access security (basic protection against unintended manipulation)

EPICS can scale from very big to very small systems. Big systems have to be able to transport and store large amounts of
data, be robust and reliable but also failure-tolerant. Failure of a single component should not bring the system down.
For small installations it has to be possible to set up a control system without requiring complicated or expensive
infrastructure components.

For modern applications, management of data is becoming increasingly important. It shall be possible to store acquired
operational data for the long term and to retrieve it in the original form. EPICS provides the tools to achieve this and
to tailor the data management to the needs of the facility.

One of the most appreciated aspects of EPICS is the lively collaboration that is spread around the globe. Members of
the collaboration are happy to help other users with their issues and to discuss new ideas.

CONTENTS 1

EPICS Documentation

2 CONTENTS

CHAPTER

ONE

HOW THIS DOCUMENTATION IS ORGANIZED

Each page is labeled by the intended audienece. You may also directly use related links to see documents which match
you the most.

Tags: beginner user developer advanced

1.1 Getting started with EPICS

Tags: beginner

1.1.1 System components

Broadly speaking, the EPICS toolset enables creation of servers and client applications. Servers provide access to data,
reading or writing, locally or over a network. Reading and writing is often done to and from hardware connected to
physical components, however data can also be produced or used elsewhere. Physical I/O, however is the central task
of any control system, including EPICS.

Clients can display, store and manipulate the data. Client software ranges from (graphical and command line) user
interface tools to powerful services for data management.

The basic components of an EPICS-based control system are:

IOC, the Input/Output Controller. This is the I/O server component of EPICS. Almost any computing platform that can
support EPICS basic components like databases and network communication can be used as an IOC. One example is a
regular desktop computer, other examples are systems based on real-time operating systems like vxWorks or RTEMS
and running on dedicated modular computing platforms like MicroTCA, VME or CompactPCI. EPICS IOC can also
run on low-cost hardware like RaspberryPi or similar.

CWS, or Client WorkStation. This is a computer that can run various EPICS tools and client applications; typical
examples are user interface tools and data archiving. CWS can be desktop computer, a server machine or similar, and
is usually running a “regular” (as opposed to real-time) operating system like Linux, Windows or MacOS.

LAN Local Area Network. This is just a standard Ethernet-based (or wireless) communication network that allows the
IOCs and CWS’s to communicate.

A simple EPICS control system can be composed of one or more IOCs and Client WorkStations that communicate
over a LAN (Figure 1). Separation of clients and servers makes configuration of the systems easier and also makes
the system more robust. Clients and servers can be added to and removed from the system without having to stop the
operation.

3

EPICS Documentation

Figure 1. A simple EPICS control system structure.

In addition to these basic components of a “classical” EPICS control system, it is also possible to implement servers
(aka services) for data that are not “process I/O” (real-time values from a controlled process) or attached to hardware.
These other services can for example provide configuration or calibration data, or computing services like particle
beam modeling. Since all the services “speak” the same protocol and exchange the same type of data structures, the
data source is transparent to the client software (i.e., you do not need to know in advance where the data comes from
or how it is obtained.) In this sense, the IOC can be regarded as a special type of server that handles process data and
connects to real field hardware (in many cases, but not necessarily.)

The EPICS software components Channel Access (CA) and pvAccess (PVA) provide the protocols and structures that
enable network transparent communication between client software running on a CWS and an arbitrary number of
IOCs and other servers. More details about CA and PVA are provided in later chapters.

1.1.2 Basic Attributes

The basic attributes of EPICS are:

• Tool Based: EPICS provides a set of interacting tools and components for creating a control system. This
minimizes the need for customer-specific coding and helps ensure uniform operator interfaces.

• Distributed: An arbitrary number of IOCs and CWSs can be supported. As long as the network is not saturated,
there is not a single bottleneck. If a single IOC becomes saturated, its functions can be spread over several IOCs.
Rather than running all applications on a single CWS host, the applications can be spread over many CWSs.

• Event Driven: The EPICS software components are all designed to be event driven to the maximum extent
possible. For example, an EPICS client may, instead of having to query IOCs for changes, request to be notified
of a change. This design leads to efficient use of resources, as well as quick response times.

• High Performance: An IOC can process tens of thousands of data items (“database records”, see below) per
second. Clients and servers can handle systems with millions of process variables, with minimized network
overhead.

• Scalable: As a distributed system, EPICS can scale from systems with a single IOC and a few clients to large
installations with hundreds of IOCs and millions of I/O channels and process variables.

• Robust: failure of a single components does not bring the whole system down. Components (IOCs, clients) can
be added to and removed from the system without having to stop operation of the control system. The components
can withstand intermittent failures of the interconnecting network and recover automatically when the network
recovers from failure.

4 Chapter 1. How this documentation is organized

EPICS Documentation

• Process-variable based: In contrast to some other control system packages, EPICS does not model control system
(I/O) devices as objects (as in object-oriented programming) but rather as data entities that describe a single aspect
of the process or device under control, thus the name “process variable”, or “PV”. A typical PV can represent
any one of various attributes such as temperature or (electric) current. This design is typical in process control
systems. The pros and cons of this design are shortly discussed in the Appendix.

1.1.3 IOC Software Components

An EPICS IOC at its core is a software entity or a process that contains the following software components:

• IOC Database: A memory resident database containing a set of named records of various types. The records
host the process variables that were mentioned above.

• Scanners: The mechanisms for processing records in the IOC database.

• Record Support: Each record type has an associated set of record support routines to implement the functionality
of the record type.

• Device Support: Device support routines bind I/O data to the database records.

• Device Drivers: Device drivers handle access to external devices.

• Channel Access or pvAccess: The interface between the external world and the IOC. It provides the interface for
accessing the (EPICS) database via the network.

• Sequencer: A finite state machine. Strictly speaking, this is an external module and not included in the EPICS
core software distribution.

Let us briefly describe the major components of the IOC and how they interact.

Figure 2. EPICS IOC components.

1.1. Getting started with EPICS 5

EPICS Documentation

1.1.4 IOC Database

The heart of each IOC is a process database. This database is memory resident (i.e., not stored on a hard disk or other
permanent memory device) and has nothing to do with the more commonly known relational (aka SQL) databases.

The database defines the functionality of the IOC: what process data it provides, how is the data handled and stored.
The database can contain any number of records, each of which belongs to a specific record type. The record type
defines the type of data that the record handles and a set of functions that define how the data are handled. Record
type-specific metadata, also known as “properties” is included in the records to configure and support the operation.
For instance, an analog input (ai) record type supports reading in values from hardware devices and converting them
into desired (engineering) units. It also provides limits for expected operating ranges and alarms when these limits are
exceeded. EPICS supports a large and extensible set of record types, e.g. ai (Analog Input), ao (Analog Output), etc.

The metadata, known as “fields” is used to configure the record’s behavior. There are a number of fields that are
common to all record types while some fields are specific to particular record types. Every record has a record name
and every field has a field name. The record name must be unique across all IOCs that are attached to the same TCP/IP
subnet, to enable the client software to discover any record on the subnet and to access its value and other fields.

record(ai, "Cavity1:T") #type = ai, name = “Cavity1:T”
{
field(DESC, “Cavity Temperature”) #description
field(SCAN, “1 second”) #record update rate
field(DTYP, “XYZ ADC”) #Device type
field(INP, “#C1 S4”) #input channel
field(PREC, “1”) #display precision
field(LINR, “typeJdegC”) #conversion spec
field(EGU, “degrees C”) #engineering units
field(HOPR, “100”) #highest value on GUI
field(LOPR, “0”) #lowest value on GUI
field(HIGH, “65”) #High alarm limit
field(HSV, “MINOR”) #Severity of “high” alarm

}

Figure 3. Example of an EPICS database record. Only a subset of fields is defined here.

Database records can be linked with each other. For example, records can retrieve input from other records, trigger
other records to process, enable or disable records and so on.

By linking a combination of records together, the EPICS database becomes a programming tool. Using this, even
very sophisticated functions can be achieved with the database. In addition, as this logic resides on the IOC, it is not
dependent on any client software to work. By taking advantage of this, many client programs can be “thin” and just
display or write the values in the database records. Figure 4 below illustrates a simple example of record linking: if the
average temperature of the two sensors T1 and T2 is over 10 degrees, the chiller is switched on. This database contains
four records: two analog inputs (ai), one binary output (bo) and one calculation (calc).

6 Chapter 1. How this documentation is organized

EPICS Documentation

Figure 4. Example of record linking. From [2].

Data structures are provided so that the database can be accessed efficiently. Most software components do not need to
be aware of these structures because they access the database via library routines.

1.1.5 Database Scanning

Database scanning is the mechanism to process a record. Processing means making the record perform its task, for
instance reading an I/O channel, converting the read value to engineering units, attaching a timestamp to the value or
checking the alarm limits. How data are handled when a record is processed depends on the record type.

Four basic types of record scanning are provided: Periodic, Event, I/O Event and Passive. All these methods can be
mixed in an IOC.

• Periodic: A record is processed periodically. A number of time intervals are supported, typically ranging from
10 Hz to 0.01 Hz. Ranges are configurable to support higher and lower rates.

• Event: Event scanning happens when any IOC software component posts an (EPICS software) event, such as a
new temperature sensor measurement value.

• I/O Event: The I/O event scanning system processes records based on external events like processor interrupts.
An IOC device driver interrupt routine must be available to accept the external interrupts. An I/O Event does
not necessarily have to be an interrupt in the traditional sense of a CPU interrupt, though.

• Passive: Passive records are not scanned regularly or on events. However, they can be processed as a result when
other records that are linked to them are processed, or as a result of external changes such as new values set over
network using Channel Access.

1.1. Getting started with EPICS 7

EPICS Documentation

1.1.6 Record Support, Device Support and Device Drivers

Access to the database does not require record type-specific knowledge; each record type provides a set of record
support routines that implement all record-specific behavior. Therefore, IOCs can support an arbitrary number of
records and record types. Similarly, record support contains no device specific knowledge, giving each record type the
ability to have any number of independent device support modules. If the method of accessing the piece of hardware is
more complicated than can be handled by device support, then a device driver can be developed. Sometimes splitting
functionality between device support (when it is record type-specific) and a driver (when the code handles device-
specific details) is a good practice.

Record types that are not associated with hardware do not need to have device support or device drivers. One example
is a calculation (“calc”) record that reads its input from other records, performs a calculation and then (optionally)
forwards the result to other records.

The IOC software design allows a particular installation and even a particular IOC within an installation to choose a
unique set of record types, device types, and drivers. The remainder of the IOC system software is unaffected.

To give an overview of how the separation works, let us look at the tasks of the record support. Every record support
module must provide a record processing routine to be called by the database scanners. Record processing consists of
some combination of the following functions (all record types do not need all functions):

• Input: Read inputs. Inputs can be obtained, via device support routines, from hardware, from other database
records via database links, or from other IOCs via Channel Access (CA) or pvAccess (PVA) links.

• Conversion: Conversion of raw input to engineering units or engineering units to raw output values.

• Output: Write outputs. Output can be directed, via device support routines, to hardware, to other database
records within the same IOC via database links, or to other IOCs via CA or PVA links.

• Raise Alarms: Check for and raise alarms.

• Monitor: Trigger monitors related to CA or PVA callbacks.

• Link: Trigger processing of linked records.

The same concept is applied to the device support and device driver modules: each support module has to define a set
of functions so that it can become a part of the IOC software.

1.1.7 Database Monitors

The mechanism to send notifications when a database value changes is called “database monitors”. The monitor facility
allows a client program to be notified when database values change without having to constantly poll the database. These
can be configured to specify value changes, alarm changes, and/or archival changes.

Database monitors are supported by the EPICS standard protocols Channel Access and pvAccess.

1.1.8 Network protocols

EPICS provides network transparent access to IOC databases by supporting the following network protocols for data
exchange.

8 Chapter 1. How this documentation is organized

EPICS Documentation

Channel Access

Channel Access is based on a client/ server model. Each IOC provides a Channel Access server that is able to establish
communication with an arbitrary number of clients. Channel Access client services are available on both CWSs and
IOCs. A client can communicate with an arbitrary number of servers.

Client Services

The basic Channel Access client services are:

• Search: Locate the IOCs containing selected process variables and establish communication with each one.

• Get: Get value plus additional optional information for a selected set of process variables.

• Put: Change the values of selected process variables.

• Monitor: Request to have the server send information only when the associated process variable changes state.
Any combination of the following state changes can be requested: change of value, change of alarm status and/or
severity, and change of archival value. Many record types provide hysteresis factors for value changes.

In addition to process variable values, any combination of the following additional information (“metadata”) may be
requested:

• Status: Alarm status and severity.

• Units: Engineering units for this process variable.

• Precision: Precision with which to display floating-point numbers.

• Timestamp: Time when the record was last processed.

• Enumeration: A set of ASCII strings defining the meaning of enumerated values.

• Graphics: High and low limits for configuring widgets and graphs on a graphical user interface (GUI).

• Control: High and low control limits; operational limits for the record.

• Alarm: The alarm status (HIHI, HIGH, LOW, and LOLO) and severity for the process variable.

Search Server

Channel Access provides an IOC resident server, which waits for Channel Access search messages. These are UDP
broadcasts that are generated by a Channel Access client (for example when an Operator Interface task starts) when it
searches for the IOCs containing process variables it uses. This server accepts all search messages, checks to see if any
of the process variables are located in this IOC, and, if any are found, replies to the sender with an “I have it” message.

Connection Request Server

Once the process variables have been located, the Channel Access client issues connection requests for each IOC con-
taining process variables the client uses. The connection request server, in the IOC, accepts the request and establishes
a connection to the client. Each connection is managed by two separate tasks: ca_get and ca_put. The ca_add_event
requests result in database monitors being established. Database access and/or record support routines provide the
value updates (monitors) via a call to db_post_event.

1.1. Getting started with EPICS 9

EPICS Documentation

Connection Management

Each IOC provides a connection management service. If a Channel Access server fails (e.g. its IOC crashes) the client
is notified and when a client fails (e.g. its task crashes) the server is notified. If a client fails, the server breaks the
connection. If a server crashes, the client automatically re-establishes communication when the server restarts.

pvAccess

pvAccess is a modern replacement and an alternative to Channel Access available in EPICS 7. PvAccess adds a number
of capabilities to EPICS that augment the set of services provided by Channel Access. With pvAccess, structured data
can be transported with a high efficiency and is capable of handling big data sets; this has been achieved with a number
of optimizations:

• Data structure introspection and data transport have been separated so that structure information needs to be
carried only once per connection.

• Monitors send only the items of a data structure that have changed.

• Several under-the-hood optimizations in data manipulation have been made (reduce copying, etc.) In application
testing pvAccess has been able to utilize 96-99% percent of the available theoretical bandwidth of a 10 Gbit
Ethernet link which is close to the limit of what is achievable in practice.

Client Services

The basic pvAccess client services are similar to Channel Access, with a couple of additions:

• Search: Locate the IOCs that contain the process variables of interest and establish communication with each
one.

• Get: Get value plus additional optional information for a selected set of process variables.

• Put: Change the values of selected process variables.

• Add Monitor: Add a change of state callback, similar to Channel Access.

• PutGet: Change the value of a PV, process the EPICS record and read back the value in one atomic operation.

• ChannelRPC: A “Remote Procedure Call” [3] communication pattern. This is similar to PutGet, but the com-
munication is asymmetric, i.e., the data sent by client (“request”) is different from the data structure that the
server sends back. This pattern can be described as a query with parameters. Examples could be to ask a cali-
bration service for parameters for a certain device, or a beam physics server for calculated beam parameters at
certain coordinates of the accelerator.

For the IOC, an IOC resident server (qsrv) provides the interface to access the process database records. Basic access
to a single PV provides the equivalent function to channel access. In addition, qsrv provides the possibilities to create
data structures that combine data from different database records into structures that are transported as units. Since
EPICS 3.16, the IOC core is able to guarantee atomic access to the records, meaning that the data in the structure that
qsrv provides is guaranteed to be a result of a single processing (or better expressed, that the records do not change
their values while qsrv is assembling the data structure.) This applies also to puts, meaning that all values are written
to the addressed records before the records are processed. This way, coherence of parameters for an operation can be
guaranteed.

10 Chapter 1. How this documentation is organized

EPICS Documentation

Search Server

Like in Channel Access, qsrv waits for search messages. The server accepts all (UDP) search messages, checks to see
if any of the process variables are located in this IOC, and if any are found, replies to the sender with an “I have it”
message.

Connection Request Server

In pvAccess, the process of how a client and a server establish the communication channel is slightly different from
Channel Access and contains two stages. The first stage is exchanging introspection data. In this stage, the server
communicates to the client the structure of the data to be exchanged. Both sides can then create the necessary place-
holder structures for the communication. In the second stage the actual data can be exchanged, using the allocated data
structures.

Connection Management

pvAccess provides a connection management service similar to Channel Access.

EPICS database and network transport

It should be noted that the access methods (pvAccess, Channel Access) do not provide access to the EPICS database as
records. This is a deliberate design decision. This allows changes to be made in the database structures or new record
types to be added without impacting any software that accesses the database via PVA or CA, and it allows these clients
to communicate with multiple IOCs having differing sets of record types.

1.1.9 Client Workstation Tools

EPICS offers a range of tools and services that are executed on the client workstations. These can be divided into two
groups based on whether or not they use Channel Access and/or pvAccess. CA/PVA tools are real time tools, i.e. they
are used to monitor and control IOCs. These tools are not included in the EPICS “base” distribution and have to be
downloaded separately. The tools are implemented in different languages and technologies and the users should select
which tools are the best suited to their particular setup and infrastructure.

Examples of CA/pvAccess Tools

A large number of CA/PVA tools have been developed. The following are some representative examples.

• CS-Studio: Control System Studio, an application bundle with many available plug-ins like display managers
(BOY, Display Builder), data visualization/charting tools (DataBrowser), and so on.

• EDM: Extensible Display Manager. One of the several alternative display managers. Other popular alternatives
are caQtDM (based on the Qt framework), medm (Motif Extended Display Manager, a legacy tool), just to name
a couple.

• Alarm Handler. General-purpose alarm handler driven by an alarm configuration file.

• Sequencer: Runs in an IOC to implement state machines.

• Archiver Appliance: Collects data from EPICS servers (CA,PVA) and stores the data in time-series files so that
they can be later retrieved and analyzed for correlating events and monitoring the performance of the “machine”,
i.e., the device or facility under control.

• Channel Finder (Indexing Service): A tool to manage (list, tag, categorize) the EPICS records in a system. This
is a powerful tool to manage and provide hierarchy and different viewpoints to the potentially very large number
of records. With this service, abstract views to the flat namespace of the records can be provided. For example,

1.1. Getting started with EPICS 11

EPICS Documentation

listing all vacuum pumps in the system, or horizontal position of the beam in the accelerator as measured by the
Beam Position Monitors.

Examples of other Tools

• VDCT: A Java based database configuration tool, which can be used to design and configure EPICS databases,
and is able to visualize the records and their connections.

• SNC: State Notation Compiler. It generates a C program that represents the states for the IOC Sequencer tool.

1.1.10 References and further reading

1. Control Theory (https://en.wikipedia.org/wiki/Control_theory)

2. http://epics.web.psi.ch/training/handouts/e_EPICS_Training_at_PSI.ppt

3. https://en.wikipedia.org/wiki/Remote_procedure_call

4. EPICS Application Developer’s Manual (version dependent, see for instance http://www.aps.anl.gov/epics/base/
R3-15/5-docs/AppDevGuide/AppDevGuide.html)

5. https://www.encyclopedia.com/computing/dictionaries-thesauruses-pictures-and-press-releases/atomic-action

6. Recent Advancements and Deployments of EPICS Version 4, Greg White et. al., ICALEPCS 2015, Melbourne,
Australia.

1.1.11 Appendix: Objects vs Process Variables discussion

As discussed in Chapter 2, EPICS is based on a “flat”, i.e., non-hierarchical set of records, which represent the Process
Variables1 of the control system. This has a number of pros and cons:

Pros:

• Easy to adjust to any specific case without need of detailed modeling of the devices.

• Efficient communication: only the data of interest needs to be transported.

• PVs are modular building blocks that can be mixed and matched as needed.

• Even complex functionality can be implemented without (traditional) programming.

Cons:

• Lack of abstraction; control of complex entities has to be implemented on top of the PVs.

• Management of discrete data items is hard; lack of atomic actions [4].

• Advantages of object-oriented programming (code reuse, encapsulation, etc.) cannot be utilized.

One can extend these lists and argue about them but the above are the most common.

There is no single truth saying that this model is better or worse than other conceivable models. It depends on the use
case and how much weight is put on each different factor.

However, the new features in EPICS 7 have been added to mitigate the lack of abstraction and atomic actions. The
structured data model in EPICS 7 allows construction of complex structures to represent abstract entities. Further,
these entities can be built from the existing building blocks, thus the flexibility is retained; in a way this is even better
than strict modeling because the abstraction can be added on top of the working system afterwards. Also, atomic

1 Strictly speaking, each field of a record can also be considered as a process variable. However, for this discussion it is sufficient to take the
simpler approach to equate a record with a PV.

12 Chapter 1. How this documentation is organized

https://en.wikipedia.org/wiki/Control_theory
http://epics.web.psi.ch/training/handouts/e_EPICS_Training_at_PSI.ppt
https://en.wikipedia.org/wiki/Remote_procedure_call
http://www.aps.anl.gov/epics/base/R3-15/5-docs/AppDevGuide/AppDevGuide.html
http://www.aps.anl.gov/epics/base/R3-15/5-docs/AppDevGuide/AppDevGuide.html
https://www.encyclopedia.com/computing/dictionaries-thesauruses-pictures-and-press-releases/atomic-action
http://epics-pvdata.sourceforge.net/talks/2015/ICALEPCS2015_WEA3O02_TALK.pdf

EPICS Documentation

actions – to the extent they can be implemented in a distributed system – have been added, thus removing the need of
complicated workaround solutions.

1.2 Installation Overview

Tags: beginner

An EPICS installation typically consists of multiple software modules.

EPICS Base will always be one of them. Base and additional modules that provide libraries or tools are often referred
to as Support Modules, while the modules that produce your control system are often called IOC Application Modules.

EPICS Base and the Support Modules are usually common and shared between the IOC Applications of an installation.
You can consider a stable and tested set of Base and Support Modules a release of your development environment.

As Support Modules are shared, have a longer life cycle and are held more stable than the IOC Applications that use
them, it is a good idea to keep the Support Modules and IOC Applications separate.

This section will mostly cover installing EPICS Base and Support Modules. IOC Applications are too specific to be
covered by general documentation.

1.2.1 General workflow

The traditional way to install EPICS is by compiling from sources.

While the specific instructions differ between Operating Systems on your host, the general steps are always the same:

1. Install prerequisites

2. Download, configure and install EPICS Base

3. Download, configure and install Support Modules

4. Create your IOC Application

1.2.2 Which version should I chose?

Please use new versions.

Unless you have specific reasons to use an older version, using the current release will make sure you have all the
features and all the bug fixes. Using current versions for all modules in your set of Support Modules minimizes issues
that may show up because of incompatibilities.

1.3 Installation on Linux / MacOS

1.3.1 Scope of these instructions

Starting from scratch, we get to the point where we have a working server, offering some PVs for reading (caget or
pvget) and writing (caput or pvput). We read and write on them from another terminal, either on the same machine or
on another one in the same network.

If you are using two different machines, both of them need to have access to the same EPICS installation.

1.2. Installation Overview 13

EPICS Documentation

1.3.2 Prepare your system

You need make, c++ and libreadline to compile from source. On macOS these dependencies can be installed by
using e.g. homebrew. On Linux you can use apt-get install. The EPICS Dependencies on CentOS 8 document
lists all of the packages required to build EPICS base, the sequencer, synApps modules, and areaDetector.

1.3.3 Install EPICS

mkdir $HOME/EPICS
cd $HOME/EPICS
git clone --recursive https://github.com/epics-base/epics-base.git
cd epics-base
make

After compiling you should put the path into $HOME/.profile or into $HOME/.bashrc by adding the following to
either one of those files:

export EPICS_BASE=${HOME}/EPICS/epics-base
export EPICS_HOST_ARCH=$(${EPICS_BASE}/startup/EpicsHostArch)
export PATH=${EPICS_BASE}/bin/${EPICS_HOST_ARCH}:${PATH}

EpicsHostArch is a program provided by EPICS that returns the architecture of your system. Thus the code above
should be fine for every architecture.

1.3.4 Test EPICS

Now log out and log in again, so that your new path is set correctly. Alternatively, you can execute the three lines above
beginning with export directly from the terminal.

Run softIoc and, if everything is ok, you should see an EPICS prompt.

softIoc
epics>

You can exit with ctrl-c or by typing exit.

Voilà.

Ok, that is not very impressive, but at least you know that EPICS is installed correctly. So now let us try something
more complex, which will hopefully suggest how EPICS works.

In whatever directory you like, prepare a file test.db that reads like

record(ai, "temperature:water")
{

field(DESC, "Water temperature in the fish tank")
}

This file defines a record instance called temperature:water, which is an analog input (ai) record. As you can imagine
DESC stays for Description. Now we start softIoc again, but this time using this record database.

softIoc -d test.db

Now, from your EPICS prompt, you can list the available records with the dbl command and you will see something
like

14 Chapter 1. How this documentation is organized

EPICS Documentation

epics> dbl
temperature:water
epics>

Open a new terminal (we call it nr. 2) and try the command line tools caget and caput. You will see something like

your prompt> caget temperature:water
temperature:water 0
your prompt> caget temperature:water.DESC
temperature:water.DESC Water temperature in the fish tank
your prompt> caput temperature:water 21
Old : temperature:water 0
New : temperature:water 21
your prompt> caput temperature:water 24
Old : temperature:water 21
New : temperature:water 24
your prompt> caget temperature:water
temperature:water 24
... etc.

Now open yet another terminal (nr. 3) and try camonitor as

camonitor temperature:water

First, have a look at what happens when you change the temperature:water value from terminal nr. 2 using caput. Then,
try to change the value by some tiny amounts, like 15.500001, 15.500002, 15.500003. . . You will see that camonitor
reacts but the readings do not change. If you wanted to see more digits, you could run

camonitor -g8 temperature:water

For further details on the Channel Access protocol, including documentation on the caput, caget, camonitor. . .
command line tools, please refer to the Channel Access Reference Manual.

In real life, however, it is unlikely that the 8 digits returned by your thermometer (in this example) are all significant.
We should thus limit the traffic to changes of the order of, say, a hundredth of a degree. To do this, we add one line to
the file test.db, so that it reads

record(ai, "temperature:water")
{

field(DESC, "Water temperature in Lab 10")
field(MDEL, ".01")

}

MDEL stands for Monitor Deadband. If you now run

softIoc -d test.db

with the new test.db file, you will see that camonitor reacts only to changes that are larger than 0.01.

This was just a simple example. Please refer to a recent Record Reference Manual for further information.

1.3. Installation on Linux / MacOS 15

https://epics.anl.gov/base/R3-15/7-docs/CAref.html#CommandTools
https://epics.anl.gov/base/R3-15/7-docs/RecordReference.html

EPICS Documentation

1.3.5 Create a demo/test ioc to test ca and pva

mkdir -p $HOME/EPICS/TEST/testIoc
cd $HOME/EPICS/TEST/testIoc
makeBaseApp.pl -t example testIoc
makeBaseApp.pl -i -t example testIoc
make
cd iocBoot/ioctestIoc
chmod u+x st.cmd
ioctestIoc> ./st.cmd
#!../../bin/darwin-x86/testIoc
< envPaths
epicsEnvSet("IOC","ioctestIoc")
epicsEnvSet("TOP","/Users/maradona/EPICS/TEST/testIoc")
epicsEnvSet("EPICS_BASE","/Users/maradona/EPICS/epics-base")
cd "/Users/maradona/EPICS/TEST/testIoc"
Register all support components
dbLoadDatabase "dbd/testIoc.dbd"
testIoc_registerRecordDeviceDriver pdbbase
Load record instances dbLoadTemplate "db/user.substitutions"
dbLoadRecords "db/testIocVersion.db", "user=junkes"
dbLoadRecords "db/dbSubExample.db", "user=junkes"
#var mySubDebug 1
#traceIocInit
cd "/Users/maradona/EPICS/TEST/testIoc/iocBoot/ioctestIoc"
iocInit
Starting iocInit
##
EPICS R7.0.1.2-DEV
EPICS Base built Mar 8 2018
##
iocRun: All initialization complete
2018-03-09T13:07:02.475 Using dynamically assigned TCP port 52908.
Start any sequence programs
#seq sncExample, "user=maradona"
epics> dbl
maradona:circle:tick
maradona:compressExample
maradona:line:b
maradona:aiExample
maradona:aiExample1
maradona:ai1
maradona:aiExample2
... etc. ...
epics>

Now in another terminal, one can try command line tools like

caget, caput, camonitor, cainfo (Channel Access)
pvget, pvput, pvlist, eget, ... (PVAccess)

16 Chapter 1. How this documentation is organized

EPICS Documentation

1.3.6 Add the asyn package

cd $HOME/EPICS
mkdir support
cd support
git clone https://github.com/epics-modules/asyn.git
cd asyn

Edit $HOME/EPICS/support/asyn/configure/RELEASE and set EPICS_BASE like

EPICS_BASE=${HOME}/EPICS/epics-base

Comment IPAC=... and SNCSEQ=..., as they are not needed for the moment. The whole file should read:

#RELEASE Location of external products
HOME=/Users/maradona
SUPPORT=$(HOME)/EPICS/support
-include $(TOP)/../configure/SUPPORT.$(EPICS_HOST_ARCH)
IPAC is only necessary if support for Greensprings IP488 is required
IPAC release V2-7 or later is required.
#IPAC=$(SUPPORT)/ipac-2-14
SEQ is required for testIPServer
#SNCSEQ=$(SUPPORT)/seq-2-2-5
EPICS_BASE 3.14.6 or later is required
EPICS_BASE=$(HOME)/EPICS/epics-base
-include $(TOP)/../configure/EPICS_BASE.$(EPICS_HOST_ARCH)

Now, run

make

If the build fails due to implicit declaration of xdr_* functions it is likely that asyn should build against libtirpc. To
do so, you can uncomment # TIRPC=YES in configure/CONFIG_SITE of asyn, such that it states:

Some linux systems moved RPC related symbols to libtirpc
To enable linking against this library, uncomment the following line
TIRPC=YES

1.3.7 Install StreamDevice (by Dirk Zimoch, PSI)

cd $HOME/EPICS/support
git clone https://github.com/paulscherrerinstitute/StreamDevice.git
cd StreamDevice/
rm GNUmakefile

Edit $HOME/EPICS/support/StreamDevice/configure/RELEASE to specify the install location of EPICS base
and of additional software modules, for example:

EPICS_BASE=${HOME}/EPICS/epics-base
SUPPORT=${HOME}/EPICS/support
ASYN=$(SUPPORT)/asyn

1.3. Installation on Linux / MacOS 17

EPICS Documentation

Remember that $(NAME) works if it is defined within the same file, but ${NAME} with curly brackets must be used if a
shell variable is meant. It is possible that the compiler does not like some of the substitutions. In that case, replace the
${NAME} variables with full paths, like /Users/maradona/EPICS....

The sCalcout record is part of synApps. If streamDevice should be built with support for this record, you have to install
at least the calc module from SynApps first. For now let’s just comment out that line with # for it to be ignored.

::
#CALC=${HOME}/EPICS/support/synApps/calc

If you want to enable regular expression matching, you need the PCRE package. For most Linux systems, it is already
installed. In that case tell StreamDevice the locations of the PCRE header file and library. However, the pre-installed
package can only by used for the host architecture. Thus, add them not to RELEASE but to RELEASE.Common.linux-
x86 (if linux-x86 is your EPICS_HOST_ARCH). Be aware that different Linux distributions may locate the files in
different directories.

PCRE_INCLUDE=/usr/include/pcre
PCRE_LIB=/usr/lib

For 64 bit installations, the path to the library may be different:

PCRE_INCLUDE=/usr/include/pcre
PCRE_LIB=/usr/lib64

Again, if you’re not interested in support for reular expression matching at this time then you can comment out any
lines referring to PCRE in the configure/RELEASE file using a #. It can always be added later.

Finally run make (we are in the directory ...EPICS/support/StreamDevice)

1.4 Installation on Windows

Tags: beginner

1.4.1 Introduction

EPICS

EPICS is a toolkit for building control systems. You can get the basic ideas from the EPICS web site at https:
//epics-controls.org/about-epics/.

Traditionally, an EPICS installation starts with compiling the core parts (“EPICS Base”) from source. This process is
covered by these instructions, starting from scratch on a Windows system and getting you to the point where you have
a working IOC and can connect to it from a command line shell. Other How-Tos will guide you further.

18 Chapter 1. How this documentation is organized

https://epics-controls.org/about-epics/
https://epics-controls.org/about-epics/

EPICS Documentation

EPICS on Windows

While it is not its primary or most widely used target platform, the EPICS low-level libraries have good and well-tested
implementations on Windows. EPICS runs fine on Windows targets, fast and robust.

There are, however, a few choices about how to compile and run EPICS on Windows that you will have to take before-
hand. Understanding these choices and their implications before making decisions will help you to avoid mistakes and
spend time fixing them.

Cygwin

As mentioned before, EPICS Base has its own native Windows implementation of all necessary low level services.
There is no need to go through the Posix emulation layer that Cygwin provides. The native Windows implementation
is more portable and performs better. Unless you need to use Cygwin, e.g., if you are using a binary vendor-provided
library for Cygwin, you should prefer a native Windows build.

Also, Cygwin is deprecated as a target platform for EPICS.

Build Time

The time needed to build EPICS Base depends on a few factors, including the speed of the processor and file system,
the compiler used, the build mode (DLL or static), possibly debugging options and others. On a medium sized two-core
machine, a complete build of EPICS 7 often takes between 15 and 30 minutes, the 3.15 branch can be built in 6 to 10
minutes.

Use make -j<n> to make use of multiple CPU cores.

1.4.2 Required Tools

• C++ compiler: either MinGW (GCC) or Microsoft’s Visual Studio compiler (VS)

• archive unpacker (7zip or similar)

• GNU Make (4.x)

• Perl

1.4.3 Choice 1: Compiler

You will need a C++ compiler with its supporting C++ standard libraries. Two major compilers are supported by EPICS
and its build system:

Microsoft’s Visual Studio compiler (VS)
Probably the most widely used compiler for EPICS on the Windows platform. The “Community Edition” is free
to download and use. (You need to have Administrator rights to install it.) Any Visual Studio installation will
need the “C++ development” parts for the compiler toolchain to be installed.

EPICS is using the Make build system. You can use the Visual Studio IDE, but EPICS does not provide any
project files or configurations for Visual Studio’s own build system.

MinGW (GCC) - Minimalist GNU for Windows
A compiler toolchain based on the widely-used GNU compilers that - like the VS compiler - generates native
Windows executables.

1.4. Installation on Windows 19

EPICS Documentation

Both compiler toolchains can create shared libraries (DLLs) and static libraries. On a 64bit system, both can create
64bit output (runs on 64bit systems) and 32bit output (runs on both 32bit and 64bit systems).

When using C++, libraries are not compatible between those two compilers toolchains. When generating a binary (e.g.,
an IOC), all C++ code that is being linked must have been generated uniformly by either VS or MinGW. (The reason
is different name mangling for symbol names: a symbol needed for linking an executable will not be found in a library
generated with the other compiler, because its name is different there.)

If you need to link against vendor-provided binary C++ libraries, this will most likely determine which compiler you
need to use.

1.4.4 Choice 2: Build Environment and Tool Installation

MSYS2

MSYS2 (available for Windows 7 and up) is a pretty complete “feels like Linux” environment. It includes a Linux style
package manager (pacman), which makes it very easy to install the MinGW toolchains (32 and 64 bit) and all other
necessary tools. It also offers a bash shell. If you are used to working in a Linux environment, you will like working
on MSYS2.

MSYS2 can be installed, used and updated (including tools and compilers) without Administrator rights.

As up-to-date MinGW/GCC compilers are an integral part of the package, MSYS2 is strongly recommended for using
the MinGW compiler toolchains.

The Visual Studio compilers can also be used from the MSYS2 bash. This needs a one-time setup of an intermediate
batch script to get the Visual Studio environment settings correctly inherited. The resulting shell can compile using
Visual Studio compilers as well as using MinGW, selected by the EPICS_HOST_ARCH environment variable setting.

Chocolatey

Chocolatey is a package manager for Windows with a comfortable GUI, making it easy to install and update software
packages (including the tools needed for building EPICS). In many cases, Chocolatey packages wrap around the native
Windows installers of software.

Using Chocolatey needs Administrator rights.

Windows Installers

You can also install the required tools independently, directly using their native Windows installers.

For Perl, both Strawberry Perl and ActivePerl are known to work. Strawberry Perl is more popular; it includes GNU
Make (as gmake.exe) and the MinGW/GCC compiler necessary to build the Channel Access Perl module that is part
of EPICS Base.

For GNU Make, the easiest way is to use the one included in Strawberry Perl. Otherwise, there is a Windows binary
provided on the EPICS web site.

Native Windows installers often need Administrator rights.

20 Chapter 1. How this documentation is organized

https://www.msys2.org/
https://chocolatey.org/

EPICS Documentation

1.4.5 Choice 3: Static or DLL Build / Deployment

If you configure the EPICS build system to build your IOCs dynamically (i.e., using DLLs), they need the DLLs they
have been linked against to be present on the target system, either in the same directory as the IOC binary or in a
directory that is mentioned in the %PATH% environment variable.

Depending on how you plan to deploy your IOCs into the production system, it might be easier to use static builds when
generating IOCs. The resulting binaries will be considerably larger, but they will run on any Windows system without
providing additional EPICS DLLs.

When running many EPICS IOCs on a single target machine, the shared aspect of a DLL build will lead to smaller
memory usage. The DLL is in memory once and used concurrently by all IOC binaries, while the statically linked
binaries each have their own copy of the library in memory.

Note: When using the Visual Studio compilers, compilation uses different flags for building DLLs and building static
libraries. You can’t generate static and shared libraries in the same build. You can provide both options in your EPICS
installation by running both builds in sequence (with make clean inbetween), so that your applications can decide
between static or DLL build. Or you can just provide one option globally for your installation, which all installations
will have to use.

1.4.6 Windows Path Names

Make based builds do not work properly when there are space characters or parentheses in the paths that are part of the
build (including the path where the make application resides and the path of the workspace).

If you cannot avoid paths with such characters, use the Windows short path (can be displayed with dir /x) for all path
components with those characters in any path settings and/or your workspace directory.

1.4.7 Put Tools in the PATH

No matter which shell and environment you use, the tools (perl, make) should end up being in the %PATH%, so that they
are found when called just by their name.

1.4.8 Install and Build

Depending on your set of choices, the instructions for building EPICS Base, building IOC applications and running
them are different. The following detailed instructions focus on two common sets of choices: using MSYS2 with the
MinGW Gnu compilers and using the plain Windows command prompt with the Visual Studio compilers.

Setting the environment for building and running applications has to be done for either set of choices.

Installation using MSYS2 and the MinGW Compilers

MSYS2 has all the required tools available through an easy-to-use package manager, and its bash shell looks and feels
like working on Linux. Most Bash commands are similar to their Linux versions. MSYS2 is available for Windows 7
and up only. The following procedure is verified on Windows 8.1 (64 bit) and Windows 10 (64 bit).

1.4. Installation on Windows 21

EPICS Documentation

Install tools

MSYS2 provides a Bash shell, Autotools, revision control systems and other tools for building native Windows appli-
cations using MinGW-w64 toolchains. It can be installed from its official website. Download and run the installer -
“x86_64” for 64-bit, “i686” for 32-bit Windows. The installation procedure is well explained on the website. These
instructions assume you are running on 64-bit Windows.

The default location of the MSYS2 installation is C:\msys64. If you don’t have Administrator rights, you can install
MSYS2 in any location you have access to, e.g. C:\Users\'user'\msys64 (with ‘user’ being your Windows user
directory name). We will assume the default location in this document.

Once installation is complete, you have three options available for starting a shell. The difference between these options
is the preset of the environment variables that select the compiler toolchain to use. Launch the “MSYS MinGW 64-bit”
option to use the MinGW 64bit toolchain, producing 64bit binaries that run on 64bit Windows systems. The “MSYS
MinGW 32-bit” option will use the MinGW 32bit toolchain, producing 32bit binaries that will run on 32bit and 64bit
Windows systems.

Again: you have a single installation of MSYS2, these different shells are just setups to use different compilers. Instal-
lation and update of your MSYS2 system only has to be done once - you can use any of the shell options for that.

Update MSYS2 with following command:

$ pacman -Syu

After this finishes (let it close the bash shell), open bash again and run the same command again to finish the updates.
The same procedure is used for regular updates of the MSYS2 installation. An up-to-date system shows:

$ pacman -Syu
:: Synchronizing package databases...
mingw32 is up to date
mingw64 is up to date
msys is up to date
:: Starting core system upgrade...
there is nothing to do
:: Starting full system upgrade...
there is nothing to do

Install the necessary tools (perl is already part of the base system):

$ pacman -S tar make

Packages with such “simple” names are part of the MSYS2 environment and work for all compilers/toolchains that you
may install on top on MSYS2.

Install compiler toolchains

Packages that are part of a MinGW toolchain start with the prefix “mingw-w64-x86_64-” for the 64bit toolchain or
“mingw-w64-i686-” for the 32bit toolchain. (The “w64” part identifies the host system will be different when using a
32bit MSYS2 environment, e.g. on a 32bit Windows host.)

Install the MinGW 32bit and/or MinGW 64bit toolchains:

$ pacman -S mingw-w64-x86_64-toolchain
$ pacman -S mingw-w64-i686-toolchain

22 Chapter 1. How this documentation is organized

https://www.msys2.org

EPICS Documentation

Each complete toolchain needs about 900MB of disk space. If you want to cut down the needed disk space (to about
50%), instead of hitting return when asked which packages of the group to install, you can select the minimal set of
packages required for compiling EPICS Base: binutils, gcc and gcc-libs.

If you are not sure, check your set of tools is complete and everything is installed properly:

$ pacman -Q
...
make 4.3-1
perl 5.32.0-2
mingw-w64-x86_64-...
mingw-w64-i686-...
...

Update your installation regularly

As mentioned above, you can update your complete installation (including all tools and compiler toolchains) at any
time using:

$ pacman -Syu

You should do this in regular intervals.

Download and build EPICS Base

Start the “MSYS MinGW 64-bit” shell and do:

$ cd $HOME
$ wget https://epics-controls.org/download/base/base-7.0.4.1.tar.gz
$ tar -xvf base-7.0.4.1.tar.gz
$ cd base-R7.0.4.1
$ export EPICS_HOST_ARCH=windows-x64-mingw
$ make

When using the MinGW 32bit toolchain, the “MSYS MinGW 32-bit” shell must be used and EPICS_HOST ARCH
must be set to “win32-x86-mingw”.

Note: If you are connecting to your MSYS2 system through ssh, you need to set and allow an environment variable to
use the environment presets for the MinGW compilers. In the MSYS2 configuration of the ssh daemon (/etc/ssh/
sshd_config), add the line

AcceptEnv MSYSTEM

and on your (local) client configuration (~/.ssh/config) add the line

SetEnv MSYSTEM=MINGW64

to use the MinGW 64-bit compiler chain (MINGW32 to use a 32-bit installation).

During the compilation, there will probably be warnings, but there should be no error. You can choose any EPICS Base
version to build, the procedure remains the same.

Please refer to the chapter “Build Time” in Installation on Windows for ways to shorten your build.

1.4. Installation on Windows 23

EPICS Documentation

Quick test from MSYS2 Bash

As long as you haven’t added the location of your programs to the PATH environment variable (see below), you will
have to provide the whole path to run commands or cd into the directory they are located in and prefix the command
with ./.

Replace ‘user’ with the actual Windows user folder name existing in your Windows installation - MSYS2 creates your
home directory using that name. In the examples, we assume the default location for MSYS2 (C:\msys64).

Run softIoc and, if everything is ok, you should see an EPICS prompt:

$ cd /home/'user'/base-R7.0.4.1/bin/windows-x64-mingw
$./softIoc -x test
Starting iocInit
iocRun: All initialization complete
dbLoadDatabase("C:\msys64\home\'user'\base-R7.0.4.1\bin\windows-x64-mingw\..\..\dbd\
→˓softIoc.dbd")
softIoc_registerRecordDeviceDriver(pdbbase)
iocInit()
##
EPICS R7.0.4.1
Rev. 2020-10-21T11:57+0200
##
epics>

You can exit with ctrl-c or by typing exit.

As long as you are in the location of the EPICS Base binaries, you can run them by prefixing with ./. Try commands
like ./caput, ./caget, ./camonitor, . . .

Quick test from Windows command prompt

Open the Windows command prompt. Again, ‘user’ is the Windows user folder name. The MSYS2 home folders are
inside the MSYS2 installation.

If you built EPICS Base with dynamic (DLL) linking, you need to add the location of the C++ libraries to the PATH
variable for them to be found. (Again, assuming a 64bit MSYS2 installation with default paths and the MinGW 64bit
toolchain.)

>set "PATH=%PATH%C:\msys64\mingw64\bin;"
>cd C:\msys64\home\'user'\base-R7.0.4.1\bin\windows-x64-mingw
>softIoc -x test
Starting iocInit
##
EPICS R7.0.4.1
Rev. 2020-10-21T11:57+0200
##
iocRun: All initialization complete
epics>

You can exit with ctrl-c or by typing exit.

As long as you are in the location of the EPICS Base binaries, they will all work using their simple names. Try
commands like caput, caget, camonitor, . . .

24 Chapter 1. How this documentation is organized

EPICS Documentation

Create a demo/test IOC

Although the softIoc binary can be used with multiple instances with different db files, you will need to create your
own IOC at some point. We will create a test ioc from the existing application template in Base using the makeBaseApp.
pl script.

Let’s create one IOC, which takes the values of 2 process variables (PVs), adds them and stores the result in 3rd PV.

We will use MSYS2 for building the IOC. Open the MSYS2 Mingw 64-bit shell. Make sure the environment is set up
correctly (see Setting the system environment).

Create a new directory testioc:

$ mkdir testioc
$ cd testioc

From that testioc folder run the following:

$ makeBaseApp.pl -t ioc test
$ makeBaseApp.pl -i -t ioc test
Using target architecture windows-x64-mingw (only one available)
The following applications are available:

test
What application should the IOC(s) boot?
The default uses the IOC's name, even if not listed above.
Application name?

Accept the default name and press enter. That should generate a skeleton for your testioc.

You can find the full details of the application structure in the “Application Developer’s Guide”, chapter Example IOC
Application.

$ ls
configure iocBoot Makefile testApp

Now create a db file which describes PVs for your IOC. Go to testApp/Db and create test.db file with following
record details:

record(ai, "test:pv1")
{

field(VAL, 49)
}
record(ai, "test:pv2")
{

field(VAL, 51)
}
record(calc,"test:add")
{

field(SCAN, "1 second")
field(INPA, "test:pv1")
field(INPB, "test:pv2")
field(CALC, "A + B")

}

Open Makefile and navigate to

1.4. Installation on Windows 25

https://epics.anl.gov/base/R3-16/2-docs/AppDevGuide/GettingStarted.html#x3-60002.2
https://epics.anl.gov/base/R3-16/2-docs/AppDevGuide/GettingStarted.html#x3-60002.2

EPICS Documentation

#DB += xxx.db

Remove # and change this to test.db:

DB += test.db

Go to back to root folder for IOC testioc. Go to iocBoot/ioctest. Modify the st.cmd startup command file.

Change:

#dbLoadRecords("db/xxx.db","user=XXX")

to:

dbLoadRecords("db/test.db","user=XXX")

Save all the files and go back to the MSYS2 Bash terminal. Make sure the architecture is set correctly:

$ echo $EPICS_HOST_ARCH
windows-x64-mingw

Change into the testioc folder and run make:

$ cd ~/testioc
$ make

This should create all the files for the test IOC.

$ ls
bin configure db dbd iocBoot lib Makefile testApp

Go to iocBoot/ioctest . Open the envPaths file and change the MSYS2 relative paths to full Windows paths:

epicsEnvSet("IOC","ioctest")
epicsEnvSet("TOP","C:/msys64/home/'user'/testioc")
epicsEnvSet("EPICS_BASE","C:/msys64/home/'user'/base-7.0.4.1")

Note: You can use Linux style forward slash characters in path specifications inside this file or double backslashes
(\\).

At this point, you can run the IOC from either an MSYS2 Bash shell or from a Windows command prompt, by changing
into the IOC directory and running the test.exe binary with your startup command script as parameter.

In the Windows command prompt:

>cd C:\msys64\home\'user'\testioc\iocBoot\ioctest
>..\..\bin\windows-x64-mingw\test st.cmd

In the MSYS2 shell:

$ cd ~/testioc/iocBoot/ioctest
$../../bin/windows-x64-mingw/test st.cmd

In both cases, the IOC should start like this:

26 Chapter 1. How this documentation is organized

EPICS Documentation

Starting iocInit
iocRun: All initialization complete
#!../../bin/windows-x64-mingw/test
< envPaths
epicsEnvSet("IOC","ioctest")
epicsEnvSet("TOP","C:/msys64/home/'user'/testioc")
epicsEnvSet("EPICS_BASE","C:/msys64/home/'user'/base-R7.0.4.1")
cd "C:/msys64/home/'user'/testioc"
Register all support components
dbLoadDatabase "dbd/test.dbd"
test_registerRecordDeviceDriver pdbbase
Warning: IOC is booting with TOP = "C:/msys64/home/'user'/testioc"

but was built with TOP = "/home/'user'/testioc"
Load record instances
dbLoadRecords("db/test.db","user='user'")
cd "C:/msys64/home/'user'/testioc/iocBoot/ioctest"
iocInit
##
EPICS R7.0.4.1
Rev. 2020-10-21T11:57+0200
##
Start any sequence programs
#seq sncxxx,"user='user'"
epics>

Check if the database test.db you created is loaded correctly:

epics> dbl
test:pv1
test:pv2
test:add

As you can see 3 process variable is loaded and available. Keep this terminal open and running. Test this process
variable using another terminals.

Open another shell for monitoring test:add:

$ camonitor test:add
test:add 2020-10-23 13:39:14.795006 100

That terminal will monitor the PV test:add continuously. If any value change is detected, it will be updated in this
terminal. Keep it open to observe the behaviour.

Open a third shell. Using caput, modify the values of test:pv1 and test:pv2 as we have done in the temperature
example above. You will see changes of their sum in the second terminal accordingly.

At this point, you have one IOC testioc running, which loaded the database test.db with 3 records. From other
processes, you can connect to these records using Channel Access. If you add more process variable in test.db, you
will have to make the testioc application again and restart the IOC to load the new version of the database.

You can also create and run IOCs like this in parallel with their own databases and process variables. Just keep in mind
that each record instance has to have a unique name for Channel Access to work properly.

1.4. Installation on Windows 27

EPICS Documentation

Installation using plain Windows and the Visual Studio compilers

Install tools

There are two reasonable options.

Using Chocolatey

Go to the Chocolatey website and follow their instructions to download and install the package manager.

Using Chocolatey, install Strawberry Perl and Gnu Make.

Manually

Install Strawberry Perl or ActivePerl using the Windows installers available on their download pages.

Strawberry Perl contains a suitable version of GNU Make. Otherwise, you can download a Windows executable that
Andrew provides at https://epics.anl.gov/download/tools/make-4.2.1-win64.zip. Unzip it into a location (path must
not contain spaces or parentheses) and add it to the system environment.

Put tools in the Path

Make sure the tools’ locations are added to the system environment variable Path. Inside a shell (command prompt)
they must be callable using their simple name, e.g.:

>perl --version

This is perl 5, version 26, subversion 1 (v5.26.1) built for MSWin32-x64-multi-thread
(with 1 registered patch, see perl -V for more detail)

Copyright 1987-2017, Larry Wall

Binary build 2601 [404865] provided by ActiveState http://www.ActiveState.com
Built Dec 11 2017 12:23:25
...

>make --version
GNU Make 4.2.1
Built for x86_64-w64-mingw32
Copyright (C) 1988-2016 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

28 Chapter 1. How this documentation is organized

https://chocolatey.org/
https://epics.anl.gov/download/tools/make-4.2.1-win64.zip

EPICS Documentation

Install the compiler

Download the Visual Studio Installer and install (the community edition is free). Make sure you enable the Program-
ming Languages / C++ Development options.

In VS 2019, you also have the option to additionally install the Visual C++ 2017 compilers, if that is interesting for
you.

Download and build EPICS Base

1. Download the distribution from e.g. https://epics-controls.org/download/base/base-7.0.4.1.tar.gz.

2. Unpack it into a work directory.

3. Open a Windows command prompt and change into the directory you unpacked EPICS Base into.

Note: The complete path of the current directory mustn’t contain any spaces or parentheses. If your working
directory path does, you can do another cd into the same directory, replacing every path component containing
spaces or parentheses with its Windows short path (that can be displayed with dir /x).

4. Set the EPICS host architecture EPICS_HOST_ARCH (windows-x64 for 64bit builds, win32-x86 for 32bit
builds).

5. Run the vcvarsall.bat script of your installation (the exact path depends on the type and language of instal-
lation) to set the environment for your build.

6. Run make (or gmake if using the version from Strawberry Perl).

>cd base-R7.0.4.1
>set EPICS_HOST_ARCH=windows-x64
>"C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Auxiliary\Build\
→˓vcvarsall.bat" amd64
**
** Visual Studio 2019 Developer Command Prompt v16.6.2
** Copyright (c) 2020 Microsoft Corporation
**
[vcvarsall.bat] Environment initialized for: 'x64'

>make

There will probably be warnings, but there should be no error. You can choose any EPICS base to install, the procedure
remains the same.

Please refer to the chapter “Build Time” in Installation on Windows for ways to shorten your build.

Quick test from Windows command prompt

As long as you haven’t added the location of your programs to the PATH environment variable (see Setting the system
environment), you will have to provide the whole path to run commands or cd into the directory they are located in.

Open the Windows command prompt. Again, replace ‘user’ with the actual Windows user folder name existing in your
Windows installation.

Run softIoc and, if everything is ok, you should see an EPICS prompt:

1.4. Installation on Windows 29

https://epics-controls.org/download/base/base-7.0.4.1.tar.gz

EPICS Documentation

>cd C:\Users\'user'\base-R7.0.4.1\bin\windows-x64-mingw
>softIoc -x test
Starting iocInit
iocRun: All initialization complete
dbLoadDatabase("C:\Users\'user'\base-R7.0.4.1\bin\windows-x64\..\..\dbd\softIoc.dbd")
softIoc_registerRecordDeviceDriver(pdbbase)
iocInit()
##
EPICS R7.0.4.1
Rev. 2020-10-21T11:57+0200
##
epics>

You can exit with ctrl-c or by typing exit.

As long as you are in the location of the EPICS Base binaries, they will all work using their simple names. Try
commands like caput, caget, camonitor, . . .

Quick test from MSYS2 Bash

Obviously, if you have an installation of MSYS2, you can run the same verification from the MSYS2 Bash shell:

$ cd /c/Users/'user'/base-R7.0.4.1/bin/windows-x64
$./softIoc -x test
Starting iocInit
iocRun: All initialization complete
dbLoadDatabase("C:\Users\'user'\base-R7.0.4.1\bin\windows-x64\..\..\dbd\softIoc.dbd")
softIoc_registerRecordDeviceDriver(pdbbase)
iocInit()
##
EPICS R7.0.4.1
Rev. 2020-10-21T11:57+0200
##
epics>

You can exit with ctrl-c or by typing exit.

As long as you are in the location of the EPICS Base binaries, you can run them by prefixing ./. Try commands like
./caput, ./caget, ./camonitor, . . .

Create a demo/test IOC

Although the softIoc binary can be used with multiple instances with different db files, you will need to create your
own IOC at some point. We will create a test ioc from the existing application template in Base using the makeBaseApp.
pl script.

Let’s create one IOC, which takes the values of 2 process variables (PVs), adds them and stores the result in 3rd PV.

We will use the Windows command prompt for building the IOC. Open the command prompt. Create a new directory
testioc:

>mkdir testioc
>cd testioc

30 Chapter 1. How this documentation is organized

EPICS Documentation

From that testioc folder run the following:

>makeBaseApp.pl -t ioc test
>makeBaseApp.pl -i -t ioc test
Using target architecture windows-x64 (only one available)
The following applications are available:

test
What application should the IOC(s) boot?
The default uses the IOC's name, even if not listed above.
Application name?

Accept the default name and press enter. That should generate a skeleton for your testioc.

You can find the full details of the application structure in the “Application Developer’s Guide”, chapter Example IOC
Application.

>dir /b
configure
iocBoot
Makefile
testApp

Now create a db file which describes PVs for your IOC. Go to testApp\Db and create test.db file with following
record details:

record(ai, "test:pv1")
{

field(VAL, 49)
}
record(ai, "test:pv2")
{

field(VAL, 51)
}
record(calc,"test:add")
{

field(SCAN, "1 second")
field(INPA, "test:pv1")
field(INPB, "test:pv2")
field(CALC, "A + B")

}

Open Makefile and navigate to

#DB += xxx.db

Remove # and change this to test.db:

DB += test.db

Go to back to root folder for IOC testioc. Go to iocBoot\ioctest. Modify the st.cmd startup command file.

Change:

#dbLoadRecords("db/xxx.db","user=XXX")

to:

1.4. Installation on Windows 31

https://epics.anl.gov/base/R3-16/2-docs/AppDevGuide/AppDevGuide.html
https://epics.anl.gov/base/R3-16/2-docs/AppDevGuide/AppDevGuide.html

EPICS Documentation

dbLoadRecords("db/test.db","user=XXX")

Save all the files and go back to the MSYS2 Bash terminal. Make sure the environment is set up correctly (see Setting
the system environment).:

>echo $EPICS_HOST_ARCH
windows-x64
>cl
Microsoft (R) C/C++ Optimizing Compiler Version 19.27.29112 for x64
Copyright (C) Microsoft Corporation. All rights reserved.

Change into the testioc folder and run make (or gmake when using the make from Strawberry Perl):

>cd %HOMEPATH%\testioc
>make

This should build the executable and create all files for the test IOC:

>dir /b
bin
configure
db
dbd
iocBoot
lib
Makefile
testApp

At this point, you can run the IOC from either an MSYS2 Bash shell or from a Windows command prompt, by changing
into the IOC directory and running the test.exe binary with your startup command script as parameter.

In the Windows command prompt:

>cd %HOMEPATH%\testioc\iocBoot\ioctest
>..\..\bin\windows-x64\test st.cmd

Or - if you have an installation - in the MSYS2 shell:

$ cd ~/testioc/iocBoot/ioctest
$../../bin/windows-x64/test st.cmd

In both cases, the IOC should start like this:

Starting iocInit
#!../../bin/windows-x64/test
< envPaths
epicsEnvSet("IOC","ioctest")
epicsEnvSet("TOP","C:/Users/'user'/testioc")
epicsEnvSet("EPICS_BASE","C:/Users/'user'/base-R7.0.4.1")
cd "C:/Users/'user'/testioc"
Register all support components
dbLoadDatabase "dbd/test.dbd"
test_registerRecordDeviceDriver pdbbase
Load record instances

(continues on next page)

32 Chapter 1. How this documentation is organized

EPICS Documentation

(continued from previous page)

dbLoadRecords("db/test.db","user='user'")
cd "C:/Users/'user'/testioc/iocBoot/ioctest"
iocInit
##
EPICS R7.0.4.1
Rev. 2020-10-21T11:57+0200
##
iocRun: All initialization complete
Start any sequence programs
#seq sncxxx,"user='user'"
epics>

Check if the database test.db you created is loaded correctly:

epics> dbl
test:pv1
test:pv2
test:add

As you can see 3 process variable is loaded and available. Keep this terminal open and running. Test this process
variable using another terminals.

Open another shell for monitoring test:add:

>camonitor test:add
test:add 2020-10-23 13:39:14.795006 100

That terminal will monitor the PV test:add continuously. If any value change is detected, it will be updated in this
terminal. Keep it open to observe the behaviour.

Open a third shell. Using caput, modify the values of test:pv1 and test:pv2 as we have done in the temperature
example above. You will see changes of their sum in the second terminal accordingly.

At this point, you have one IOC testioc running, which loaded the database test.db with 3 records. From other
processes, you can connect to these records using Channel Access. If you add more process variable in test.db, you
will have to make the testioc application again and restart the IOC to load the new version of the database.

You can also create and run IOCs like this in parallel with their own databases and process variables. Just keep in mind
that each record instance has to have a unique name for Channel Access to work properly.

Setting the system environment

In order to run all EPICS commands anywhere by using their simple name and to build more EPICS modules using
the same setup, you can set three environment variables for the current shell or user on the Windows system:

• EPICS_BASE

• EPICS_HOST_ARCH

• Path

Note that running IOCs only needs the Path to be set correctly (when using dynamic DLL builds). Building IOC
applications needs EPICS_HOST_ARCH and benefits from EPICS_BASE being set.

1.4. Installation on Windows 33

EPICS Documentation

Required settings for Path

The way you are building your binaries determines which paths have to be added to the Path variable.

• Static builds

1. Add the EPICS Base binary directory for your target to be able to call the EPICS command line tools
without specifying their fully qualified path.

This setting is for convenience only and not mandatory. Your IOCs run without it.

• Dynamic (DLL) builds

1. Add the EPICS Base binary directory for your target so that the EPICS DLLs are found and you can use
the CLI tools without specifying the path.

2. If you built your binaries using MinGW and want to use them under the Command Prompt or through a
shortcut icon, add the MinGW binary directory (“C:\msys64\mingw64\bin”) so that the MinGW runtime
system DLLs are found. Inside the MSYS2 Bash shell, this location is included by default.

Both settings are mandatory; the former for all builds, the latter under the stated condition.

Set environment using a batch or script from EPICS Base

EPICS Base provides script and batch files to help setting the environment for running EPICS commands and doing
EPICS builds.

The windows.bat batch file in the folder called startup sets the environment if you use the Windows command
prompt and compiled your EPICS Base using Visual Studio compilers with the help of Strawberry Perl. You probably
will have to edit windows.bat to adapt it to your needs and call it from any Windows command prompt before doing
EPICS commands or builds.

If you use the MSYS2 bash shell, you similarly need to adapt and run the unix.sh shell script from any bash shell
prompt before doing EPICS commands or builds.

Set environment using the Windows settings

This method requires less effort and does not need something special to be executed or called from the command
prompt.

Go to Start Menu, Type “environment” and select “Edit environment variables for your account”. If you have Admin-
istrator rights and want to do it globally, you can also select Edit the system environment variables.

1. Select Advance tab, navigate to Environment Variables button. That should open editable tables of settings
for Windows Environment.

2. Select User Variable for 'user' option, press NEW

3. Add EPICS BASE path here. In Variable Name, put “EPICS_BASE”. For Variable Value, enter the loca-
tion of your EPICS Base installation, e.g., “C:\msys64\home\’user’\base-R7.0.4.1”

4. Set the host architecture. In Variable Name, put “EPICS_HOST_ARCH”. For Variable Value, put
“windows-x64-mingw” or “windows-x64” (depending on your selection of compilers).

5. Navigate to the variable called Path. Press Edit.

6. If you are using the MinGW compilers and dynamic (DLL) linking, add the path for the MinGW64 DLLs. Press
NEW and enter “C:\msys64\mingw64\bin”. Press ok.

34 Chapter 1. How this documentation is organized

EPICS Documentation

7. Add the path for the EPICS commands and DLLs. Press NEW and enter %EPICS_BASE%\bin\
%EPICS_HOST_ARCH%. Press ok twice and you are done.

8. Restart the Machine and check if EPICS commands like caget and camonitor are being recognised as valid
commands in any location and work.

Note that by default the MSYS2 shell does not inherit the parent environment. To change that behavior, you need to
start the shell with the argument -use-full-path.

1.5 EPICS Dependencies on CentOS 8

Tags: beginner

Contents

• EPICS Dependencies on CentOS 8

– Overview

– Packages required to build EPICS base

– Packages required by the sequencer

– Packages required by epics-modules/asyn

– Packages required by the Canberra and Amptek support in epics-modules/mca

– Packages required by the Linux drivers in epics-modules/measComp

– Packages required by areaDetector/ADSupport/GraphicsMagick

– Packages required by areaDetector/ADEiger

– Packages required to build aravis 7.0.2 for areaDetector/ADAravis

– Packages required to build areaDetector/ADVimba

– Packages required to build EDM

– Packages required to build MEDM

1.5.1 Overview

This document describes the packages that must be installed in order to build EPICS base, synApps, and areaDetector
on a new CentOS 8 system. For other Linux distributions the package manager and package names may be different,
but the requirements are likely to be similar.

Add the Extra Packages for Enterprise Linux (EPEL) repository for the dnf package manager. This site has additional
packages that are needed:

sudo dnf install epel-release

Enable the powertools repository by running:

sudo dnf config-manager --set-enabled powertools

Or on CentOS 9 Stream by running:

1.5. EPICS Dependencies on CentOS 8 35

EPICS Documentation

sudo dnf config-manager --set-enabled crb

1.5.2 Packages required to build EPICS base

sudo dnf install gcc gcc-c++ gcc-toolset-9-make readline-devel perl-ExtUtils-Install make

1.5.3 Packages required by the sequencer

sudo dnf install re2c

1.5.4 Packages required by epics-modules/asyn

sudo dnf install rpcgen libtirpc-devel

1.5.5 Packages required by the Canberra and Amptek support in epics-
modules/mca

sudo dnf install libnet-devel libpcap-devel libusb-devel

1.5.6 Packages required by the Linux drivers in epics-modules/measComp

sudo dnf install libnet-devel libpcap-devel libusb-devel

1.5.7 Packages required by areaDetector/ADSupport/GraphicsMagick

sudo dnf install xorg-x11-proto-devel libX11-devel libXext-devel

1.5.8 Packages required by areaDetector/ADEiger

sudo dnf install zeromq-devel

1.5.9 Packages required to build aravis 7.0.2 for areaDetector/ADAravis

sudo dnf install ninja-build meson glib2-devel libxml2-devel gtk3-devel gstreamer1␣
→˓gstreamer1-devel gstreamer1-plugins-base-devel libnotify-devel gtk-doc gobject-
→˓introspection-devel

36 Chapter 1. How this documentation is organized

EPICS Documentation

1.5.10 Packages required to build areaDetector/ADVimba

sudo dnf install glibmm24-devel

1.5.11 Packages required to build EDM

sudo dnf install giflib giflib-devel zlib-devel libpng-devel motif-devel libXtst-devel

1.5.12 Packages required to build MEDM

sudo dnf install libXt-devel motif-devel

1.6 Cross compiling to an old x86 Linux system

Tags: developer advanced

1.6.1 Introduction

I was given the task of developing a IOC which should run in a x86 PC with an old Linux distribution. My development
machine was a x86_64 PC running Ubuntu 12.04.

EPICS does a great job cross compiling from a 64-bits host to a 32-bits target, if both have compatible versions of glibc,
binutils, kernel, etc. In my case, however, my target had much older versions.

I considered two different solutions:

1. Create a Virtual Machine and install the target’s Linux distribution. From the Virtual Machine, compile EPICS
and my IOC, and then run the IOC in the target.

2. Build a toolchain configured for my target and use that toolchain to compile both EPICS and the IOC.

The first approach is the easiest, but compiling from inside a VM can be slow and the distribution was not very user
friendly. So I took the second path, which I’ll describe in this document.

1.6.2 Overview

I’m assuming you, like me, are running Ubuntu 64 bits. I’m also assuming you already have EPICS base downloaded
and compiled. We will go through the steps of downloading, configuring and compiling Crosstool-NG, which will be
used to generate our toolchain. Then we will download and compile a couple of libraries needed by EPICS (namely
readline and ncurses). Finally, we will compile EPICS base and an example IOC to our target using the newly built
toolchain.

1.6. Cross compiling to an old x86 Linux system 37

http://crosstool-ng.org/
https://www.gnu.org/software/readline/
https://www.gnu.org/software/ncurses/

EPICS Documentation

1.6.3 Crosstool-NG

Downloading and extracting

First we get the tarball containing the source code and extract it.

wget http://crosstool-ng.org/download/crosstool-ng/crosstool-ng-1.9.3.tar.bz2
tar -xvf crosstool-ng-1.9.3.tar.bz2

Crosstool-NG has a lot of dependencies, you might want to get them before compiling:

sudo apt-get install gawk bison flex texinfo automake libtool cvs libcurses5-dev build-
→˓essential

Compiling

In order to compile:

cd crosstool-ng-1.9.3
./configure --local
make

Configuring

Before configuring Crosstool-NG, I gathered information about my target system:

Kernel Version:

$ uname -r
2.6.27.27

GCC Version:

$ gcc --version
gcc (GCC) 4.2.4

glibc version:

$ /lib/libc.so.6
GNU C Library stable release version 2.7, by Roland McGrath et al.

binutils version:

$ ld --version
GNU ld (Linux/GNU Binutils) 2.18.50.0.9.20080822

Based on this information, and on a lot of trial and error, I configured Crosstool-NG as follows (everything else set as
default):

$./ct-ng menuconfig

PATHS AND MISC OPTIONS
[*] Use obsolete features

(continues on next page)

38 Chapter 1. How this documentation is organized

EPICS Documentation

(continued from previous page)

TARGET OPTIONS
Target architecture (x86)
Bitness: (32-bit)
(i686) Architecture Level

OPERATING SYSTEM
Target OS (linux)
Linux kernel version (2.6.27.55)

BINARY UTILITIES
Binutils version (2.17)

C-COMPILER
GCC version (4.2.4)
[*] C++

C-LIBRARY
glibc version (2.6.1)

I tried other configurations, but they crashed the compilation process.

Compiling the toolchain

Now we can compile the toolchain:

./ct-ng build

This will take a while. Go get some coffee or watch a cat video on Youtube.

Once built, the toolchain will be in $HOME/x-tools/i686-unknown-linux-gnu/

It’s a good idea (I think) to put the cross-compiler binaries on your path. Add this to the end of your ~/.bashrc:

PATH=$PATH:$HOME/x-tools/i686-unknown-linux-gnu/bin

Then source your .bashrc, so the changes take effect.

. ~/.bashrc

1.6.4 EPICS dependencies

In order to properly build epics-base to our target system, we have to take care of EPICS dependencies first. Namely,
the libraries ‘readline’ and ‘ncurses’.

They will be installed in our toolchain directory. We have to make it writable:

chmod -R +w $HOME/x-tools/i686-unknown-linux-gnu/i686-unknown-linux-gnu/sys-root/usr

Now we can download, configure, compile and install the libraries.

1.6. Cross compiling to an old x86 Linux system 39

EPICS Documentation

readline

wget ftp://ftp.cwru.edu/pub/bash/readline-6.2.tar.gz
tar -xvf readline-6.2.tar.gz
cd readline-6.2
./configure --prefix=$HOME/x-tools/i686-unknown-linux-gnu/i686-unknown-linux-gnu/sys-
→˓root/usr --host=i686-unknown-linux-gnu
make
make install

ncurses

wget ftp://ftp.gnu.org/pub/gnu/ncurses/ncurses-5.9.tar.gz
tar -xvf ncurses-5.9.tar.gz
cd ncurses-5.9
./configure --prefix=$HOME/x-tools/i686-unknown-linux-gnu/i686-unknown-linux-gnu/sys-
→˓root/usr --host=i686-unknown-linux-gnu
make
make install

1.6.5 Configure cross-compilation in EPICS

We’re almost done. Back to the epics-base directory, open the file: $EPICS_BASE/configure/CONFIG_SITE

Change the line:

CROSS_COMPILER_TARGET_ARCHS=

To:

CROSS_COMPILER_TARGET_ARCHS=linux-686

This tells EPICS base to be compiled both for the host system and for the linux-686 target.

Save and close. Now we will create our own target configuration file, based on a existing file.

cd $EPICS_BASE/configure/os
cp CONFIG_SITE.Common.linux-x86 CONFIG_SITE.Common.linux-686

Open CONFIG_SITE.Common.linux-686 and edit it. Comment out the line:

#COMMANDLINE_LIBRARY = READLINE

And uncomment:

COMMANDLINE_LIBRARY = READLINE_NCURSES

At the end of the file, add the lines:

GNU_DIR=$HOME/x-tools/i686-unknown-linux-gnu
GNU_TARGET=i686-unknown-linux-gnu

40 Chapter 1. How this documentation is organized

EPICS Documentation

This tells EPICS to search for both readline and ncurses libraries during compilation. The last two lines indicate the
location of the toolchain and its prefix. Save and close. Last file to edit: CONFIG.Common.linux-686

Change the line that says

VALID_BUILDS = Ioc

To

VALID_BUILDS = Host Ioc

This is needed in order to get caRepeater compiled, according to this source.

Recompile EPICS base

Now, we recompile EPICS base:

make clean uninstall
make

Hopefully, we have everything in place to start developing our IOC’s.

1.6.6 Example IOC

Let’s create a working directory for our programs. I decided to call it ‘apps’:

mkdir ~/apps

Creating

To create an example IOC, we use a Perl script provided by EPICS:

cd ~/apps
mkdir myexample
cd myexample
makeBaseApp.pl -t example myexample

The last command tells the script to create an application named ‘myexample’ using the template (option -t) ‘example’.
Now we make our IOC bootable

makeBaseApp.pl -i -t example myexample

It will ask you what the target is. We went to all this trouble to be able to select:

linux-686

For the Application Name, just hit enter.

1.6. Cross compiling to an old x86 Linux system 41

https://epics.anl.gov/tech-talk/2012/msg01102.php

EPICS Documentation

Configuring

Add this line to the file ~/apps/myexample/configure/CONFIG_SITE

STATIC_BUILD=YES

This will statically link EPICS libraries into our executable.

Now, let’s consider that you will put your IOC in the folder /home of your target system. Edit the file
~/apps/myexample/iocBoot/iocmyexample/envPaths, so it will be:

epicsEnvSet("ARCH","linux-686")
epicsEnvSet("IOC","iocskel")
epicsEnvSet("TOP","/home/myexample")
epicsEnvSet("EPICS_BASE","/home/myexample")

Note that we set EPICS base to coincide with the folder of our IOC. I did it because the IOC depends on the caRepeater
program, which would be present in an EPICS base if we had one in our target. Because we don’t, I’ll simply copy the
caRepeater generated by the host to the the /bin folder of our IOC folder:

cp $EPICS_BASE/bin/linux-686/caRepeater ~/apps/myexample/bin/linux-686/

Compiling

Compile the IOC and prepare it for execution.

make
chmod +x iocBoot/iocmyexample/st.cmd

Note that you won’t be able to run the IOC in your host system, given that it was compiled to our target system. You
won’t be able to run it in your target system neither, as your target lacks three libraries: two needed by caRepeater and
one needed by the IOC.

First, take care of the libraries needed by caRepeater:

mkdir ~/apps/myexample/lib
mkdir ~/apps/myexample/lib/linux-686/
cp $EPICS_BASE/lib/linux-686/libca.so.3.14 ~/apps/myexample/lib/linux-686
cp $EPICS_BASE/lib/linux-686/libCom.so.3.14 ~/apps/myexample/lib/linux-686

Then copy libreadline from your host’s folder:

~/x-tools/i686-unknown-linux-gnu/i686-unknown-linux-gnu/sys-root/usr/lib/libreadline.so.
→˓6.2

To your target’s folder:

/lib/libreadline.so.6

Please note the change in the filename.

42 Chapter 1. How this documentation is organized

EPICS Documentation

Executing

After copying your myexample folder to your target’s /home folder, you can run your IOC:

cd /home/myexample/iocBoot/iocmyexample
./st.cmd

If everything goes as expected, you will have an epics prompt:

epics>

Try listing the records:

epics> dbl
bruno:ai1
bruno:ai2
bruno:ai3
bruno:aiExample
bruno:aiExample1
bruno:aiExample2
bruno:aiExample3
bruno:aSubExample
bruno:calc1
bruno:calc2
bruno:calc3
bruno:calcExample
bruno:calcExample1
bruno:calcExample2
bruno:calcExample3
bruno:compressExample
bruno:subExample
bruno:xxxExample

1.7 Creating an IOC Application

Tags: user developer

This example shows how to create an IOC Application with an IOC using StreamDevice to talk to devices, e.g., via
ethernet.

Create a directory for the IOC Applications. For example $HOME/EPICS/IOCs

cd $HOME/EPICS
mkdir IOCs
cd IOCs

Create a top for an IOC called sampleIOC

mkdir sampleIOC; cd sampleIOC
makeBaseApp.pl -t example sampleIOC
makeBaseApp.pl -i -t example sampleIOC
Using target architecture darwin-x86 (only one available)
The following applications are available:

(continues on next page)

1.7. Creating an IOC Application 43

EPICS Documentation

(continued from previous page)

sampleIOC
What application should the IOC(s) boot?
The default uses the IOC's name, even if not listed above.
Application name? (just return)

Now, by running make, a sample IOC like the demo/test IOC is built. Next, we want to add asyn and StreamDevice to
the IOC. For this, we add the stream and asyn libraries to the Makefile. Edit sampleIOCApp/src/Makefile and add
the block

#add asyn and streamDevice to this IOC production libs
sampleIOC_LIBS += stream
sampleIOC_LIBS += asyn

The application must also load asyn.dbd and stream.dbd to use StreamDevice. This can be put into a generated
dbd, e.g into xxxSupport.dbd which already gets included by the Makefile. So the xxxSupport.dbd now reads:

cat sampleIOCApp/src/xxxSupport.dbd
include "xxxRecord.dbd"
device(xxx,CONSTANT,devXxxSoft,"SoftChannel")
#
include "stream.dbd"
include "asyn.dbd"
registrar(drvAsynIPPortRegisterCommands)
registrar(drvAsynSerialPortRegisterCommands)
registrar(vxi11RegisterCommands)

To find the dbd files, you have to add the paths to these files in configure/RELEASE:

...
Build variables that are NOT used in paths should be set in
the CONFIG_SITE file.
Variables and paths to dependent modules:
SUPPORT = ${HOME}/EPICS/support
ASYN=$(SUPPORT)/asyn
STREAM=$(SUPPORT)/stream
If using the sequencer, point SNCSEQ at its top directory:
#SNCSEQ = $(MODULES)/seq-ver
...

If make was done before, make distclean is probably required. Anyway, then make. The newly created IOC can be
run with:

cd iocBoot/iocsampleIOC/
chmod u+x st.cmd
./st.cmd

Not very interesting yet, because there is no database file nor a protocol file.

ls -la sampleIOCApp/Db/
total 56
drwxr-xr-x 11 maradona staff 374 Jun 1 16:47 .
drwxr-xr-x 5 maradona staff 170 Jun 1 12:46 ..
-rw-r--r-- 1 maradona staff 523 Jun 1 12:46 Makefile

(continues on next page)

44 Chapter 1. How this documentation is organized

EPICS Documentation

(continued from previous page)

drwxr-xr-x 2 maradona staff 68 Jun 1 16:47 O.Common
drwxr-xr-x 3 maradona staff 102 Jun 1 16:47 O.darwin-x86
-rw-r--r-- 1 maradona staff 1761 Jun 1 12:46 circle.db
-rw-r--r-- 1 maradona staff 1274 Jun 1 12:46 dbExample1.db
-rw-r--r-- 1 maradona staff 921 Jun 1 12:46 dbExample2.db
-rw-r--r-- 1 maradona staff 286 Jun 1 12:46 dbSubExample.db
-rw-r--r-- 1 maradona staff 170 Jun 1 12:46 sampleIOCVersion.db
-rw-r--r-- 1 maradona staff 307 Jun 1 12:46 user.substitutions

Note that this is a Db directory and not the db directory that is in ./sampleIOC. For MDOxxxx scopes by Tektronix,
the database (.db) and protocol (.proto) file can look something like

cat MDO.db
record(stringin, (P)(R)idn){

field(DESC, "Asks for info blabla")
field(DTYP, "stream")
field(INP, "@MDO.proto getStr(*IDN,99) $(PORT) $(A)")
field(PINI, "YES")

}

cat MDO.proto
Terminator = LF;
getStr{

out "$1?";
in "%s";
@replytimeout {out "$1?"; in "%s";}

}

Now, we add to sampleIOCApp/Db/Makefile the information that these files must be included in the compilation.
So

cat sampleIOCApp/Db/Makefile
TOP=../..
include $(TOP)/configure/CONFIG
#--
ADD MACRO DEFINITIONS BELOW HERE
Install databases, templates & substitutions like this
DB += circle.db
DB += dbExample1.db
DB += dbExample2.db
DB += sampleIOCVersion.db
DB += dbSubExample.db
DB += user.substitutions
DB += MDO.db
DB += MDO.proto
If .db template is not named *.template add
_TEMPLATE =
include $(TOP)/configure/RULES
#--
ADD EXTRA GNUMAKE RULES BELOW HERE

Again, make in directory sampleIOC. Finally, we add IP port configuration, setting the Stream path and loading the
database to the st.cmd file. The st.cmd should read:

1.7. Creating an IOC Application 45

EPICS Documentation

cat st.cmd

#!../../bin/darwin-x86/sampleIOC

#- You may have to change sampleIOC to something else
#- everywhere it appears in this file

< envPaths

epicsEnvSet ("STREAM_PROTOCOL_PATH","$(TOP)/db")

cd "${TOP}"

Register all support components
dbLoadDatabase "dbd/sampleIOC.dbd"
sampleIOC_registerRecordDeviceDriver pdbbase

Load record instances
dbLoadTemplate "db/user.substitutions"
dbLoadRecords "db/sampleIOCVersion.db", "user=UUUUUU"
dbLoadRecords "db/dbSubExample.db", "user=UUUUUU"

#IF if the user also defines EPICS_CAS_INTF_ADDR_LIST then beacon address
#list automatic configuration is constrained to the network interfaces specified
#therein, and therefore only the broadcast addresses of the specified LAN interfaces,
#and the destination addresses of all specified point-to-point links, will be␣
→˓automatically configured.
#epicsEnvSet ("EPICS_CAS_INTF_ADDR_LIST","aaa.aaa.aaa.aaa")

connect to the device ... IP-Address ! Port 2025 used by textronix, see manual
drvAsynIPPortConfigure("L0","bbb.bbb.bbb.bbb:pppp",0,0,0)

Load record instances
dbLoadRecords("db/MDO.db", "P=UUUUUU:,PORT=L0,R=MDO:,L=0,A=0")

#- Set this to see messages from mySub
#var mySubDebug 1

#- Run this to trace the stages of iocInit
#traceIocInit

cd "${TOP}/iocBoot/${IOC}"
iocInit

Start any sequence programs
#seq sncExample, "user=UUUUUU"

In here, you have to replace UUUUUU with the user name that runs the EPICS IOC (you?). bbb.bbb.bbb.bbb is the IP
of the device (e.g. the scope) and pppp the port on which it listens. EPICS_CAS_INTF_ADDR_LIST can be used if
there are two network interfaces (e.g. wlan and eth0).

The following commands might be necessary with multiple network interfaces:

46 Chapter 1. How this documentation is organized

EPICS Documentation

export EPICS_CA_ADDR_LIST=ccc.ccc.ccc.ccc << Broadcast address of the network
export EPICS_CA_AUTO_ADDR_LIST=NO

1.8 EPICS applications on Mac OS X

1.8.1 How do I get EPICS applications to work with a Mac OS X firewall?

These instructions apply to OS X 10.6 and higher

• Start the System Preferences application

• Select the “Security & Privacy” pane

• Select the “Firewall” tab

• Open the lock to allow changes

• Ensure that the firewall is on

• Click the “Advanced” button

• Add your EPICS applications (e.g. caRepeater, caget, camonitor, caput, StripTool, edm, soft IOCs, etc.) to the
list and set the firewall to “Allow incoming connections” to them

1.9 Configuring vxWorks 6.x

Tags: developer advanced

1.9.1 vxWorks 6.x Information

This page provides a advice on configuring and using the Wind River’s Workbench environment and the vxWorks 6.x
RTOS with EPICS. If you discover any other information that ought to be published here, please let me know.

Note that there is a separate page provided for users of vxWorks 5.x and Wind River’s Tornado.

Tornado 2.2 and Linux

PowerPC

Configuring WRS Tornado 2.x for EPICS

Configuring a vxWorks 6.x image

Using the Wind River Workbench to create a vxWorks image suitable for running EPICS IOCs, the following compo-
nents are required in addition to the standard components included with a new vxWorks 6.x Image Project (System
Image) with a PROFILE_DEVELOPMENT Configuration Profile:

• C++ components

– standard library

∗ C++ Iostreams and other . . . — INCLUDE_CPLUS_IOSTREAMS

• Network Components (default)

– Network Applications (default)

1.8. EPICS applications on Mac OS X 47

mailto:anj@anl.dot.gov
https://epics-controls.org/resources-and-support/documents/howto-documents/vxworks6/t2-2-linux/
https://epics-controls.org/resources-and-support/documents/howto-documents/vxworks6/powerpc/
https://epics-controls.org/resources-and-support/documents/howto-documents/vxworks6/t20xconfig/

EPICS Documentation

∗ SNTP Components

· SNTP Client (daemon) — INCLUDE_IPSNTPC
Set the NTP server addresses under here. The primary server IPv4 address can be set to sysBoot-
Params.had for the IOC to always use its boot host as an NTP server.

– Network Core Components (default)

∗ Backwards compatibility wrapper routines

· libc wrappers

· sntpcTimeGet wrapper — INCLUDE_IPWRAP_SNTPCTIMEGET

∗ network init — INCLUDE_NET_INIT

• operating system components (default)

– IO system components (default)

∗ IO Subsystem Components

· Basic IO System

· max # open files in the system — NUM_FILES
Configure this to more than the maximum number of CA sessions you expect need to connect
into and out of this IOC at the same time. The CA protocol uses one file handle per client, and
every additional network socket, serial port and other vxWorks device will use at least one.

– kernel components (default)

∗ unix compatable environment variables (default)

· install environment variable task create/delete hooks — ENV_VAR_USE_HOOKS
This variable must be set to FALSE.

The following components are optional but will often be wanted:

• Network Components (default)

– Network Applications (default)

∗ SNTP Components

· INCLUDE_IPSNTP_CMD

∗ DNS Client — INCLUDE_IPDNSC
Set the DNS domain name and at least the DNS primary name server under here. The server can be
set to sysBootParams.had for the IOC to always use its boot host as a DNS server

– Network Core Components (default)

∗ Backwards compatibility wrapper routines

· libc wrappers

· arp utility wrapper — INCLUDE_IPWRAP_ARP

· utilslib wrappers

· ifShow wrapper — INCLUDE_IPWRAP_IFSHOW

· ifconfig wrapper — INCLUDE_IPWRAP_IFCONFIG

· netstat wrapper — INCLUDE_IPWRAP_NETSTAT

· ping wrapper — INCLUDE_IPWRAP_PING

· routec wrapper — INCLUDE_IPWRAP_ROUTECMD

48 Chapter 1. How this documentation is organized

EPICS Documentation

• development tool components (default)

– spy — INCLUDE_SPY

• operating system components (default)

– IO system components (default)

∗ NFS Components

· NFS client All — INCLUDE_NFS_CLIENT_ALL

These components are included in the PROFILE_DEVELOPMENT configuration by default but not required by
EPICS so may safely be excluded:

• Network Components (default)

– Network Core Components (default)

∗ Backwards compatibility wrapper routines

· libc wrappers

· getservbyname wrapper — INCLUDE_IPWRAP_GETSERVBYNAME

· getservbyport wrapper — INCLUDE_IPWRAP_GETSERVBYPORT

• application components (default)

– application initialization — INCLUDE_USER_APPL

• development tool components (default)

– Compiler support routines

∗ Diab compiler support routines — INCLUDE_DIAB_INTRINSICS

• operating system components (default)

– ANSI C components (libc) (default)

∗ ANSI locale — INCLUDE_ANSI_LOCALE

∗ ANSI stdio extensions — INCLUDE_ANSI_STDIO_EXTRA

– POSIX components

∗ POSIX timers (default) — INCLUDE_POSIX_TIMERS

∗ sigevent notification library — INCLUDE_SIGEVENT

– Real Time Process components — FOLDER_RTP

– SYSCTL Component — FOLDER_SYSCTL

vxWorks 6.6 GNU Header stdexcept

There is a bug in the GNU C++ header file stdexcept as delivered with vxWorks 6.6 which results in some undefined
symbols when you try to load the IOC code. The header has been fixed in later vxWorks releases, and there may have
been an official Wind River patch issued to fix this, but Erik Bjorklund has provided this patch to address the problem.

1.9. Configuring vxWorks 6.x 49

https://epics.anl.gov/base/vxWorks6.6-gnu-stdexcept.patch

EPICS Documentation

Adding a CR/CSR Master Window to the mv6100 BSP

Eric Bjorklund gave a talk at a EPICS collaboration meeting in June 2006 describing how he added support for accessing
the VME CR/CSR address space to the mv6100 BSP.

1.10 Configuring Tornado/vxWorks 5.5.x

Tags: user developer advanced

1.10.1 Tornado/vxWorks 5.5.x Information

This page provides a repository for information about using the WRS Tornado environment and the vxWorks 5.5.x
RTOS with EPICS that doesn’t really belong anywhere else on this site.

Note that there is a separate page provided for users of vxWorks 6.x and Wind River Workbench.

There is also a reasonably good Tornado 2.0 FAQ available on the web, mostly comprising answers to questions posted
to the comp.os.vxworks news group.

1.10.2 Tornado 2.2 (vxWorks 5.5.x)

Installation

According to the Tornado 2.2 release notes, you cannot install multiple host and/or target architectures in the same
directory.

Linux Hosting

See this page for information building vxWorks target code on Linux.

EPICS Support

VxWorks 5.5 is only supported on EPICS 3.14.x and 3.15.x releases. From Base-3.16 and later you must use VxWorks
6.6 or later.

1.10.3 PowerPC Issues

There is a separate page discussing the specific problems associated with using PowerPC CPUs under vx-
Works/Tornado.

50 Chapter 1. How this documentation is organized

https://epics.anl.gov/meetings/2006-06/RecDevDrv_Support/Support_for_CR-CSR_Addressing.pdf
http://www.xs4all.nl/~borkhuis/vxworks/vxworks.html
https://epics.anl.gov/base/tornado-linux.php
https://epics.anl.gov/base/ppc.php

EPICS Documentation

1.11 Common Database patterns

Tags: developer

1.11.1 Pull Alarm Status w/o Data

This is useful to bring alarm status in without affecting the value stored in a record. In the following example the alarm
status of $(P):set is fetched by $(P):rbv when it is processed, but the value is read from a different record.

record(bo, "$(P):set") {
field(OSEV, "MAJOR")
field(FLNK, "$(P):rbv")

}

record(bi, "$(P):rbv") {
field(SDIS, "$(P):set NPP MS")
field(DISV, "-1")
field(INP , "$(P):some:other:record")

}

1.11.2 Combined Setting and Readback

Use when a single PV is desired. Could be used to show the results of rounding in a float to fixed precision conversion.

In the following example the value read from a ‘bi’ is inverted so that the associated ‘bo’ acts as a toggle.

record(bi, "$(P):rbv") {
field(DTYP, "...")
field(INP , "...")
field(PINI, "YES")
field(FLNK, "$(P):inv")

}

record(calcout, "$(P):inv")
field(CALC, "!A")
field(INPA, "$(P):rbv")
field(OUT , "$(P) NPP")

}

record(bo, "$(P)") {
field(DTYP, "...")
field(OUT , "...")
field(FLNK, "$(P):rbv")

}

The important point is the NPP modifier on output link of the ‘calcout’ record. This updates the VAL field of the ‘bo’
record (and posts monitors) without processing it.

1.11. Common Database patterns 51

EPICS Documentation

1.12 How to avoid copying arrays with waveformRecord

Tags: developer

1.12.1 Introduction

This page describes how to use the array field memory management. This allows array data to be moved into and out
of the value (aka BPTR) field of the waveform, aai, and aao types.

Making use of this feature involves replacing the pointer stored in the BPTR field with another (user allocated) pointer.
The basic rules are:

1. BPTR, and the memory it is currently pointing to, can only be accessed while the record is locked.

2. NELM may not be changed.

3. BPTR must always point to a piece of memory large enough to accommodate the maximum number of elements
(as given by the NELM field).

Rule #1 means that it is only safe to read, write, or de-reference the BPTR field from a device support function, or
after manually calling dbScanLock(). Rule #3 means that BPTR can never be set to NULL, and when replacing BPTR,
the replacement must be allocated large enough for the worst case. An external client may put an array of up to NELM
elements to the field at almost any time.

1.12.2 Example

/* Demonstration of using custom allocation for waveformRecord buffers.
*
* Requires EPICS Base with the array field memory management patch
* [https://code.launchpad.net/~epics-core/epics-base/array-opt](https://code.launchpad.
→˓net/%7Eepics-core/epics-base/array-opt)
*
* This example makes inefficient use of malloc() and
* free(). This is done to make clear where new memory appears.
* In reality a free list should be used.
*
* Also be aware that this example will use 100% of the time of one CPU core.
* However, this will be spread across available cores.
*
* To use this example include the following in a DBD file:
*
* device(waveform,CONSTANT,devWfZeroCopy,"Zero Copy Demo")
*
* Also include a record instance
*
* record(waveform, "$(NAME)") {
* field(DTYP, "Zero Copy Demo")
* field(FTVL, "SHORT")
* field(NELM, "100")
* field(SCAN, "I/O Intr")
* }
*/

(continues on next page)

52 Chapter 1. How this documentation is organized

https://code.launchpad.net/~epics-core/epics-base/array-opt

EPICS Documentation

(continued from previous page)

#include <errlog.h>
#include <initHooks.h>
#include <ellLib.h>
#include <devSup.h>
#include <dbDefs.h>
#include <dbAccess.h>
#include <cantProceed.h>
#include <epicsTypes.h>
#include <epicsMutex.h>
#include <epicsEvent.h>
#include <epicsThread.h>
#include <menuFtype.h>
#include <dbScan.h>

#include <waveformRecord.h>

static ELLLIST allPvt = ELLLIST_INIT;

struct devicePvt {
ELLNODE node;

/* synchronize access to this structure */
epicsMutexId lock;
/* wakeup the worker when another update is needed */
epicsEventId wakeup;
/* notify the scanner thread when another update is available */
IOSCANPVT scan;

/* the next update */
void *nextBuffer;
epicsUInt32 maxbytes, numbytes;

};

static void startWorkers(initHookState);

static long init(int phase)
{

if(phase!=0)
return 0;

initHookRegister(&startWorkers);
return 0;

}

static long init_record(waveformRecord *prec)
{

struct devicePvt *priv;
if(prec->ftvl!=menuFtypeSHORT) {

errlogPrintf("%s.FTVL must be set to SHORT for this example\n", prec->name);
return 0;

}

/* cleanup array allocated by record support.

(continues on next page)

1.12. How to avoid copying arrays with waveformRecord 53

EPICS Documentation

(continued from previous page)

* Not necessary since we use calloc()/free(),
* but needed when allocating in other ways.
*/

free(prec->bptr);
prec->bptr = callocMustSucceed(prec->nelm, dbValueSize(prec->ftvl), "first buf");

priv = callocMustSucceed(1, sizeof(*priv), "init_record devWfZeroCopy");
priv->lock = epicsMutexMustCreate();
priv->wakeup = epicsEventMustCreate(epicsEventFull);
scanIoInit(&priv->scan);
priv->maxbytes = prec->nelm*dbValueSize(prec->ftvl);

ellAdd(&allPvt, &priv->node);

prec->dpvt = priv;
return 0;

}

static void worker(void*);

static void startWorkers(initHookState state)
{

ELLNODE *cur;
/* Don't start worker threads until
* it is safe to call scanIoRequest()
*/
if(state!=initHookAfterInterruptAccept)

return;
for(cur=ellFirst(&allPvt); cur; cur=ellNext(cur))
{

struct devicePvt *priv = CONTAINER(cur, struct devicePvt, node);
epicsThreadMustCreate("wfworker",

epicsThreadPriorityHigh,
epicsThreadGetStackSize(epicsThreadStackSmall),
&worker, priv);

}
}

static void worker(void* raw)
{

struct devicePvt *priv=raw;
void *buf = NULL;
epicsUInt32 nbytes = priv->maxbytes;

while(1) {

if(!buf) {
/* allocate and initialize a new buffer for later (local) use */
size_t i;
epicsInt16 *ibuf;
buf = callocMustSucceed(1, nbytes, "buffer");
ibuf = (epicsInt16*)buf;

(continues on next page)

54 Chapter 1. How this documentation is organized

EPICS Documentation

(continued from previous page)

for(i=0; i<nbytes/2; i++)
{

ibuf[i] = rand();
}

}

/* wait for Event signal when record is scanning 'I/O Intr',
* and timeout when record is scanning periodic
*/
if(epicsEventWaitWithTimeout(priv->wakeup, 1.0)==epicsEventError) {

cantProceed("worker encountered an error waiting for wakeup\n");
}

epicsMutexMustLock(priv->lock);

if(!priv->nextBuffer) {
/* make the local buffer available to the read_wf function */
priv->nextBuffer = buf;
buf = NULL;
priv->numbytes = priv->maxbytes;
scanIoRequest(priv->scan);

}

epicsMutexUnlock(priv->lock);
}

}

static long get_iointr_info(int dir, dbCommon *prec, IOSCANPVT *scan)
{

struct devicePvt *priv=prec->dpvt;
if(!priv)

return 0;
*scan = priv->scan;
/* wakeup the worker when this thread is placed in the I/O scan list */
if(dir==0)

epicsEventSignal(priv->wakeup);
return 0;

}

static long read_wf(waveformRecord *prec)
{

struct devicePvt *priv=prec->dpvt;
if(!priv)

return 0;

epicsMutexMustLock(priv->lock);

if(priv->nextBuffer) {
/* an update is available, so claim it. */

if(prec->bptr)
free(prec->bptr);

(continues on next page)

1.12. How to avoid copying arrays with waveformRecord 55

EPICS Documentation

(continued from previous page)

prec->bptr = priv->nextBuffer; /* no memcpy! */
priv->nextBuffer = NULL;
prec->nord = priv->numbytes / dbValueSize(prec->ftvl);

epicsEventSignal(priv->wakeup);
}

epicsMutexUnlock(priv->lock);

assert(prec->bptr);

return 0;
}

static
struct dset5 {

dset com;
DEVSUPFUN read;

} devWfZeroCopy = {
{5, NULL,
&init,
&init_record,
&get_iointr_info
},
&read_wf
};

#include <epicsExport.h>

epicsExportAddress(dset, devWfZeroCopy);

1.13 Application Developer’s Guide

Tags: developer advanced

The classic Application Developer’s Guide as an online document. At this stage, this contains only the descriptive
sections of the document, detailed API documentation will be generated from the source code with Doxygen.

56 Chapter 1. How this documentation is organized

EPICS Documentation

1.13.1 Getting Started

Tags: beginner user developer

Introduction

This chapter provides a brief introduction to creating EPICS IOC applications. It contains:

• Instructions for creating, building, and running an example IOC application.

• Instructions for creating, building, and executing example Channel Access clients.

• Briefly describes iocsh, which is a base supplied command shell.

• Describes rules for building IOC components.

• Describes makeBaseApp.pl, which is a perl script that generates files for building applications.

• Briefly discusses vxWorks boot parameters

This chapter will be hard to understand unless you have some familarity with IOC concepts such as record types,
device and driver support and have had some experience with creating ioc databases. Once you have this experience,
this chapter provides most of the information needed to build applications. The example that follows assumes that
EPICS base has already been built.

Example IOC Application

This section explains how to create an example IOC application in a directory <top>, naming the application
myexampleApp and the ioc directory iocmyexample.

Check that EPICS_HOST_ARCH is defined

Execute the command:

echo $EPICS_HOST_ARCH

or

set EPICS_HOST_ARCH

This should display your workstation architecture, for example linux-x86 or win32-x86. If you get an “Undefined
variable” error, you should set EPICS_HOST_ARCH to your host operating system followed by a dash and then your
host architecture, e.g. solaris-sparc. The perl script EpicsHostArch.pl in the base/startup directory has been
provided to help set EPICS_HOST_ARCH.

Create the example application

The following commands create an example application.

mkdir <top>
cd <top>
<base>/bin/<arch>/makeBaseApp.pl -t example myexample
<base>/bin/<arch>/makeBaseApp.pl -i -t example myexample

1.13. Application Developer’s Guide 57

EPICS Documentation

Here, <arch> indicates the operating system architecture of your computer. For example, solaris-sparc. The last
command will ask you to enter an architecture for the IOC. It provides a list of architectures for which base has been
built.

The full path name to <base> (an already built copy of EPICS base) must be given. Check with your EPICS system
administrator to see what the path to your <base> is. For example:

/home/phoebus/MRK/epics/base/bin/linux-x86/makeBaseApp.pl ...

Windows Users Note: Perl scripts must be invoked with the command perl <scriptname> on Windows. Perl script
names are case sensitive. For example to create an application on Windows:

perl C:\epics\base\bin\win32-x86\makeBaseApp.pl -t example myexample

Inspect files

Spend some time looking at the files that appear under <top>. Do this before building. This allows you to see typical
files which are needed to build an application without seeing the files generated by make.

Sequencer Example

The sequencer is now supported as an unbundled product. The example includes an example state notation program,
sncExample.stt. As created by makeBaseApp the example is not built or executed.

Before sncExample.stt can be compiled, the sequencer module must have been built using the same version of base
that the example uses.

To build sncExample edit the following files:

• configure/RELEASE – Set SNCSEQ to the location of the sequencer.

• iocBoot/iocmyexample/st.cmd – Remove the comment character # from this line:

#seq sncExample, "user=<user>"

The Makefile contains commands for building the sncExample code both as a component of the example IOC applica-
tion and as a standalone program called sncProgram, an executable that connects through Channel Access to a separate
IOC database.

Build

In directory <top> execute the command

make

NOTE: On systems where GNU make is not the default another command is required, e.g. gnumake, gmake, etc. See
you EPICS system administrator.

58 Chapter 1. How this documentation is organized

EPICS Documentation

Inspect files

This time you will see the files generated by make as well as the original files.

Run the ioc example

The example can be run on vxWorks, RTEMS, or on a supported host.

• On a host, e.g. Linux or Solaris

cd <top>/iocBoot/iocmyexample
../../bin/linux-x86/myexample st.cmd

• vxWorks/RTERMS – Set your boot parameters as described at the end of this chapter and then boot the ioc.

After the ioc is started try some of the shell commands (e.g. dbl or dbpr <recordname>) described in the chapter
“IOC Test Facilities”. In particular run dbl to get a list of the records.

The iocsh command interpreter used on non-vxWorks IOCs provides a help facility. Just type:

help

or

help <cmd>

where <cmd> is one of the commands displayed by help. The help command accepts wildcards, so

help db*

will provide information on all commands beginning with the characters db. On vxWorks the help facility is available
by first typing:

iocsh

Channel Access Host Example

An example host example can be generated by:

cd <mytop>
<base>/bin/<arch>/makeBaseApp.pl -t caClient caClient
make

(or gnumake, as required by your operating system)

Two channel access examples are provided:

caExample
This example program expects a pvname argument, connects and reads the current value for the pv, displays the
result and terminates. To run this example just type.

<mytop>/bin/<hostarch>/caExample <pvname> where

• <mytop> is the full path name to your application top directory.

• <hostarch> is your host architecture.

1.13. Application Developer’s Guide 59

EPICS Documentation

• <pvname> is one of the record names displayed by the dbl ioc shell command.

caMonitor
This example program expects a filename argument which contains a list of pvnames, each appearing on a sep-
arate line. It connects to each pv and issues monitor requests. It displays messages for all channel access events,
connection events, etc.

iocsh

Because the vxWorks shell is only available on vxWorks, EPICS base provides iocsh. In the main program it can be
invoked as follows:

iocsh("filename")

or

iocsh(0)

If the argument is a filename, the commands in the file are executed and iocsh returns. If the argument is 0 then iocsh
goes into interactive mode, i.e. it prompts for and executes commands until an exit command is issued.

This shell is described in more detail in Chapter [chap:IOC Shell], “IOC Shell”.

On vxWorks iocsh is not automatically started. It can be started by just giving the following command to the vxWorks
shell.

iocsh

To get back to the vxWorks shell just say

exit

Building IOC components

Detailed build rules are given in chapter Build Facility. This section describes methods for building most components
needed for IOC applications. It uses excerpts from the myexampleApp/src/Makefile that is generated by make-
BaseApp.

The following two types of applications can be built:

1. Support applications

These are applications meant for use by ioc applications. The rules described here install things into one of the following
directories that are created just below <top>:

include
C include files are installed here. Either header files supplied by the application or header files generated from
xxxRecord.dbd or xxxMenu.dbd files.

dbd
Each file contains some combination of include, recordtype, device, driver, and registrar database
definition commands. The following are installed:

• xxxRecord.dbd and xxxMenu.dbd files

• An arbitrary xxx.dbd file

• ioc applications install a file yyy.dbd generated from file yyyInclude.dbd.

60 Chapter 1. How this documentation is organized

EPICS Documentation

db
Files containing record instance definitions.

lib/<arch>
All source modules are compiled and placed in shared or static library (win32 dll)

2. IOC applications

These are applications loaded into actual IOCs.

Binding to IOC components

Because many IOC components are bound only during ioc initialization, some method of linking to the appropriate
shared and/or static libraries must be provided. The method used for IOCs is to generate, from an xxxInclude.dbd
file, a C++ program that contains references to the appropriate library modules. The following database definitions
keywords are used for this purpose:

recordtype
device
driver
function
variable
registrar

The method also requires that IOC components contain an appropriate epicsExport statement. All components must
contain the statement:

#include <epicsExport.h>

Any component that defines any exported functions must also contain:

#include <registryFunction.h>

Each record support module must contain a statement like:

epicsExportAddress(rset,xxxRSET);

Each device support module must contain a statement like:

epicsExportAddress(dset,devXxxSoft);

Each driver support module must contain a statement like:

epicsExportAddress(drvet,drvXxx);

Functions are registered using an epicsRegisterFunction macro in the C source file containing the function, along
with a function statement in the application database description file. The makeBaseApp example thus contains the
following statements to register a pair of functions for use with a subroutine record:

epicsRegisterFunction(mySubInit);
epicsRegisterFunction(mySubProcess);

The database definition keyword variable forces a reference to an integer or double variable, e.g. debugging variables.
The xxxInclude.dbd file can contain definitions like:

1.13. Application Developer’s Guide 61

EPICS Documentation

variable(asCaDebug,int)
variable(myDefaultTimeout,double)

The code that defines the variables must include code like:

int asCaDebug = 0;
epicsExportAddress(int,asCaDebug);

The keyword registrar signifies that the epics component supplies a named registrar function that has the prototype:

typedef void (*REGISTRAR)(void);

This function normally registers things, as described in Chapter [Registry], “Registry” on page . The makeBaseApp
example provides a sample iocsh command which is registered with the following registrar function:

static void helloRegister(void) {
iocshRegister(&helloFuncDef, helloCallFunc);

}
epicsExportRegistrar(helloRegister);

Makefile rules

Building a support application.

xxxRecord.h will be created from xxxRecord.dbd
DBDINC += xxxRecord
DBD += myexampleSupport.dbd

LIBRARY_IOC += myexampleSupport

myexampleSupport_SRCS += xxxRecord.c
myexampleSupport_SRCS += devXxxSoft.c
myexampleSupport_SRCS += dbSubExample.c

myexampleSupport_LIBS += $(EPICS_BASE_IOC_LIBS)

The DBDINC rule looks for a file xxxRecord.dbd. From this file a file xxxRecord.h is created and installed into
<top>/include

The DBD rule finds myexampleSupport.dbd in the source directory and installs it into <top>/dbd

The LIBRARY_IOC variable requests that a library be created and installed into <top>/lib/<arch>

The myexampleSupport_SRCS statements name all the source files that are compiled and put into the library.

The above statements are all that is needed for building many support applications.

62 Chapter 1. How this documentation is organized

EPICS Documentation

Building the IOC application

The following statements build the IOC application:

PROD_IOC = myexample

DBD += myexample.dbd

myexample.dbd will be made up from these files:
myexample_DBD += base.dbd
myexample_DBD += xxxSupport.dbd
myexample_DBD += dbSubExample.dbd

<name>_registerRecordDeviceDriver.cpp will be created from <name>.dbd
myexample_SRCS += myexample_registerRecordDeviceDriver.cpp
myexample_SRCS_DEFAULT += myexampleMain.cpp
myexample_SRCS_vxWorks += -nil-

Add locally compiled object code
myexample_SRCS += dbSubExample.c

Add support from base/src/vxWorks if needed
myexample_OBJS_vxWorks += $(EPICS_BASE_BIN)/vxComLibrary

myexample_LIBS += myexampleSupport
myexample_LIBS += $(EPICS_BASE_IOC_LIBS)

PROD_IOC sets the name of the ioc application, here called myexample.

The DBD definition myexample.dbd will cause build rules to create the database definition include file
myexampleInclude.dbd from files in the myexample_DBD definition. For each filename in that definition, the
created myexampleInclude.dbd will contain an include statement for that filename. In this case the created
myexampleInclude.dbd file will contain the following lines.

include "base.dbd"
include "xxxSupport.dbd"
include "dbSubExample.dbd"

When the DBD build rules find the created file myexampleInclude.dbd, the rules then call dbExpand which reads
myexampleInclude.dbd to generate file myexample.dbd, and install it into <top>/dbd.

An arbitrary number of myexample_SRCS statements can be given. Names of the form
<name>_registerRecordDeviceDriver.cpp, are special; when they are seen the perl script
registerRecordDeviceDriver.pl is executed and given <name>.dbd as input. This script generates the
<name>_registerRecordDeviceDriver.cpp file automatically.

1.13. Application Developer’s Guide 63

EPICS Documentation

makeBaseApp.pl

makeBaseApp.pl is a perl script that creates application areas. It can create the following:

• <top>/Makefile

• <top>/configure – This directory contains the files needed by the EPICS build system.

• <top>/xxxApp – A set of directories and associated files for a major sub-module.

• <top>/iocBoot – A subdirectory and associated files.

• <top>/iocBoot/iocxxx – A subdirectory and files for a single ioc.

makeBaseApp.pl creates directories and then copies template files into the newly created directories while expanding
macros in the template files. EPICS base provides two sets of template files: simple and example. These are meant
for simple applications. Each site, however, can create its own set of template files which may provide additional
functionality. This section describes the functionality of makeBaseApp itself, the next section provides details about
the simple and example templates.

Usage

makeBaseApp has four possible forms of command line:

<base>/bin/<arch>/makeBaseApp.pl -h

Provides help.

<base>/bin/<arch>/makeBaseApp.pl -l [options]

List the application templates available. This invocation does not alter the current directory.

<base>/bin/<arch>/makeBaseApp.pl [-t type] [options] app ...

Create application directories.

<base>/bin/<arch>/makeBaseApp.pl -i -t type [options] ioc ...

Create ioc boot directories.

Options for all command forms:

-b base
Provides the full path to EPICS base. If not specified, the value is taken from the EPICS_BASE entry in con-
fig/RELEASE. If the config directory does not exist, the path is taken from the command-line that was used to
invoke makeBaseApp

-T template
Set the template top directory (where the application templates are). If not specified, the template path is taken
from the TEMPLATE_TOP entry in config/RELEASE. If the config directory does not exist the path is taken
from the environment variable EPICS_MBA_TEMPLATE_TOP, or if this is not set the templates from EPICS
base are used.

-d
Verbose output (useful for debugging)

Arguments unique to makeBaseApp.pl [-t type] [options] app ...:

app
One or more application names (the created directories will have “App” appended to this name)

64 Chapter 1. How this documentation is organized

EPICS Documentation

-t type
Set the template type (use the -l invocation to get a list of valid types). If this option is not used, type is taken
from the environment variable EPICS_MBA_DEF_APP_TYPE, or if that is not set the values “default” and then
“example” are tried.

Arguments unique to makeBaseApp.pl -i [options] ioc ...:

ioc
One or more IOC names (the created directories will have “ioc” prepended to this name).

-a arch
Set the IOC architecture (e.g. vxWorks-68040). If -a arch is not specified, you will be prompted.

Environment Variables:

EPICS_MBA_DEF_APP_TYPE
Application type you want to use as default

EPICS_MBA_TEMPLATE_TOP
Template top directory

Description

To create a new <top> issue the commands:

mkdir <top>
cd <top>
<base>/bin/<arch>/makeBaseApp.pl -t <type> <app> ...
<base>/bin/<arch>/makeBaseApp.pl -i -t <type> <ioc> ...

makeBaseApp does the following:

• EPICS_BASE is located by checking the following in order:

– If the -b option is specified its value is used.

– If a <top>/configure/RELEASE file exists and defines a value for EPICS_BASE it is used.

– It is obtained from the invocation of the makeBaseApp program. For this to work, the full path name to
the makeBaseApp.pl script in the EPICS base release you are using must be given.

• TEMPLATE_TOP is located in a similar fashion:

– If the -T option is specified its value is used.

– If a <top>/configure/RELEASE file exists and defines a value for TEMPLATE_TOP it is used.

– If EPICS_MBA_TEMPLATE_TOP is defined its value is used.

– It is set equal to <epics_base>/templates/makeBaseApp/top

• If -l is specified the list of application types is listed and makeBaseApp terminates.

• If -i is specified and -a is not then the user is prompted for the IOC architecture.

• The application type is determined by checking the following in order:

– If -t is specified it is used.

– If EPICS_MBA_DEF_APP_TYPE is defined its value is used.

– If a template defaultApp exists, the application type is set equal to default.

1.13. Application Developer’s Guide 65

EPICS Documentation

– If a template exampleApp exists, the application type is set equal to example.

• If the application type is not found in TEMPLATE_TOP, makeBaseApp issues an error and terminates.

• If Makefile does not exist, it is created.

• If directory configure does not exist, it is created and populated with all the configure files.

• If -i is specified:

– If directory iocBoot does not exist, it is created and the files from the template boot directory are copied
into it.

– For each <ioc> specified on the command line a directory iocBoot/ioc<ioc> is created and populated
with the files from the template (with ReplaceLine() tag replacement, see below).

• If -i is NOT specified:

– For each <app> specified on the command line a directory <app>App is created and populated with the
directory tree from the template (with ReplaceLine() tag replacement, see below).

Tag Replacement within a Template

When copying certain files from the template to the new application structure, makeBaseApp replaces some predefined
tags in the name or text of the files concerned with values that are known at the time. An application template can extend
this functionality as follows:

Two perl subroutines are defined within makeBaseApp:

ReplaceFilename
This substitutes for the following in names of any file taken from the templates.

APPNAME
APPTYPE

ReplaceLine
This substitutes for the following in each line of each file taken from the templates:

USER
_EPICS_BASE_
ARCH
APPNAME
APPTYPE
_TEMPLATE_TOP_
IOC

If the application type directory has a file named Replace.pl, this file may:

• Replace one or both of the above subroutines with its own versions.

• Provide a subroutine ReplaceFilenameHook($file) which will be called at the end of the subroutine
ReplaceFilename described above.

• Provide a subroutine ReplaceLineHook($line) which is called at the end of ReplaceLine.

• Include other code which is run after the command line options have been interpreted.

66 Chapter 1. How this documentation is organized

EPICS Documentation

makeBaseApp templetes provided with base

support

This creates files appropriate for building a support application.

ioc

Without the -i option, this creates files appropriate for building an ioc application. With the -i option it creates an ioc
boot directory.

example

Without the -i option it creates files for running an example. Both a support and an ioc application are built. With the
-i option it creates an ioc boot directory that can be used to run the example.

caClient

This builds two Channel Access clients.

caServer

This builds an example Portable Access Server.

vxWorks boot parameters

The vxWorks boot parameters are set via the console serial port on your IOC. Life is much easier if you can connect
the console to a terminal window on your workstation. On Linux the ‘screen’ program lets you communicate through
a local serial port; run screen /dev/ttyS0 if the IOC is connected to ttyS0.

The vxWorks boot parameters look something like the following:

boot device : xxx
processor number : 0
host name : xxx
file name : <full path to board support>/vxWorks
inet on ethernet (e) : xxx.xxx.xxx.xxx:<netmask>
host inet (h) : xxx.xxx.xxx.xxx
user (u) : xxx
ftp password (pw) : xxx
flags (f) : 0x0
target name (tn) : <hostname for this inet address>
startup script (s) : <top>/iocBoot/iocmyexample/st.cmd

The actual values for each field are site and IOC dependent. Two fields that you can change at will are the vxWorks
boot image and the location of the startup script.

Note that the full path name for the correct board support boot image must be specified. If bootp is used the same
information will need to be placed in the bootp host’s configuration database instead.

1.13. Application Developer’s Guide 67

EPICS Documentation

When your boot parameters are set properly, just press the reset button on your IOC, or use the @ command to commence
booting. You will find it VERY convenient to have the console port of the IOC attached to a scrolling window on your
workstation.

RTEMS boot procedure

RTEMS uses the vendor-supplied bootstrap mechanism so the method for booting an IOC depends upon the hardware
in use.

Booting from a BOOTP/DHCP/TFTP server

Many boards can use BOOTP/DHCP to read their network configuration and then use TFTP to read the applicaion
program. RTEMS can then use TFTP or NFS to read startup scripts and configuration files. If you are using TFTP
to read the startup scripts and configuration files you must install the EPICS application files on your TFTP server as
follows:

• Copy all db/xxx files to <tftpbase>/epics/<target_hostname\>/db/xxx.

• Copy all dbd/xxx files to <tftpbase>/epics/<target_hostname>/dbd/xxx.

• Copy the st.cmd script to <tftpbase>/epics/<target_hostname>/st.cmd.

Use DHCP site-specific option 129 to specify the path to the IOC startup script.

Motorola PPCBUG boot parameters

Motorola single-board computers which employ PPCBUG should have their ‘NIOT’ parameters set up like:

Controller LUN =00

Device LUN =00

Node Control Memory Address =FFE10000

Client IP Address =‘Dotted-decimal’ IP address of IOC
Server IP Address =‘Dotted-decimal’ IP address of TFTP/NFS server
Subnet IP Address Mask =‘Dotted-decimal’ IP address of subnet mask (255.255.255.0 for class C subnet)
Broadcast IP Address =‘Dotted-decimal’ IP address of subnet broadcast address
Gateway IP Address =‘Dotted-decimal’ IP address of network gateway (0.0.0.0 if none)
Boot File Name =Path to application bootable image (. . . ./bin/RTEMS-mvme2100/test.boot)
Argument File Name =Path to application startup script (. . . ./iocBoot/ioctest/st.cmd)
Boot File Load Address =001F0000 (actual value depends on BSP)
Boot File Execution Address =001F0000 (actual value depends on BSP)
Boot File Execution Delay =00000000

Boot File Length =00000000

Boot File Byte Offset =00000000

BOOTP/RARP Request Retry =00

TFTP/ARP Request Retry =00

Trace Character Buffer Address =00000000

68 Chapter 1. How this documentation is organized

EPICS Documentation

Motorola MOTLOAD boot parameters

Motrola single-board computers which employ MOTLOAD should have their network ‘Global Environment Variable’
parameters set up like:

mot-/dev/enet0-cipa=‘Dotted-decimal’ IP address of IOC
mot-/dev/enet0-sipa=‘Dotted-decimal’ IP address of TFTP/NFS server
mot-/dev/enet0-snma=‘Dotted-decimal’ IP address of subnet mask (255.255.255.0 for class C subnet)
mot-/dev/enet0-gipa=‘Dotted-decimal’ IP address of network gateway (omit if none)
mot-/dev/enet0-file=Path to application bootable image (. . . ./bin/RTEMS-mvme5500/test.boot)
rtems-client-name=IOC name (mot-/dev/enet0-cipa will be used if this parameter is missing)
rtems-dns-server=’Dotted-decimal’ IP address of domain name server (omit if none)
rtems-dns-domainname=Domain name (if this parameter is omitted the compiled-in value will be used)
epics-script=Path to application startup script (. . . ./iocBoot/ioctest/st.cmd)

The mot-script-boot parameter should be set up like:

tftpGet -a4000000 -cxxx -sxxx -mxxx -gxxx -d/dev/enet0
-f..../bin/RTEMS-mvme5500/test.boot

netShut
go -a4000000

where the -c, -s, -m and -g values should match the cipa, sipa, snma and gipa values, respectively and the -f value
should match the file value.

RTEMS NFS access

For IOCs which use NFS for remote file access the EPICS initialization code uses the startup script pathname to
determine the parameters for the initial NFS mount. If the startup script pathname begins with a ‘/’ the first component
of the pathname is used as both the server path and the local mount point. If the startup script pathname does not begin
with a ‘/’ the first component of the pathname is used as the local mount point and the server path is “/tftpboot/”
followed by the first component of the pathname. This allows the NFS client used for EPICS file access and the TFTP
client used for bootstrapping the application to have a similar view of the remote filesystem.

1.13. Application Developer’s Guide 69

EPICS Documentation

RTEMS ‘Cexp’

The RTEMS ‘Cexp’ add-on package provides the ability to load object modules at application run-time. If your RTEMS
build includes this package you can load RTEMS IOC applications in the same fashion as vxWorks IOC applications.

1.13.2 Build Facility

Tags: developer

Janet Anderson is the author of this chapter.

Overview

This chapter describes the EPICS build facility including directory structure, environment and system requirements,
configuration files, Makefiles, and related build tools.

<top> Directory structure

EPICS software can be divided into multiple <top> areas. Examples of <top> areas are EPICS base itself, EPICS
extensions, and simple or complicated IOC applications. Each <top> may be maintained separately. Different <top>
areas can be on different releases of external software such as EPICS base releases.

A <top> directory has the following directory structure:

<top>/
Makefile
configure/
dir1/
dir2/
...

where configure is a directory containing build configuration files and a Makefile, where dir1, dir2, . . . are user created
subdirectory trees with Makefiles and source files to be built. Because the build rules allow make commands like
make install.vxWorks-68040, subdirectory names within a <top> directory structure may not contain a period
“.” character.

Install Directories

Files installed during the build are installed into subdirectories of an installation directory which defaults to
$(TOP), the <top> directory. For base, extensions, and IOC applications, the default value can be changed in the
configure/CONFIG_SITE file. The installation directory for the EPICS components is controlled by the definition of
INSTALL_LOCATION

The following subdirectories may exist in the installation directory. They are created by the build and contain the
installed build components.

• dbd - Directory into which Database Definition files are installed.

• include - The directory into which C header files are installed. These header files may be generated from menu
and record type definitions.

• bin - This directory contains a subdirectory for each host architecture and for each target architecture. These are
the directories into which executables, binaries, etc. are installed.

70 Chapter 1. How this documentation is organized

EPICS Documentation

• lib - This directory contains a subdirectory for each host architecture. These are the directories into which
libraries are installed.

• db - This is the directory into which database record instance, template, and substitution files are installed.

• html - This is the directory into which html documentation is installed.

• templates - This is the directory into which template files are installed.

• javalib - This is the directory into which java class files and jar files are installed.

• configure - The directory into which configure files are installed (if INSTALL_LOCATION does not equal TOP).

• cfg - The directory into which user created configure files are installed

Elements of build system

The main ingredients of the build system are:

• A set of configuration files and tools provided in the EPICS base/configure directory

• A corresponding set of configuration files in the <top>/configure directory of a non-base <top> directory
structure to be built. The makeBaseApp.pl and makeBaseExt.pl scripts create these configuration files. Many
of these files just include a file of the same name from the base/configure directory.

• Makefiles in each directory of the <top> directory structure to be built

• User created configuration files in build created $(INSTALL_LOCATION)/cfg directories.

Features

The principal features of the build system are:

• Requires a single Makefile in each directory of a <top> directory structure

• Supports both host os vendor’s native compiler and GNU compiler

• Supports building multiple types of software (libraries, executables, databases, java class files, etc.) stored in a
single directory tree.

• Supports building EPICS base, extensions, and IOC applications.

• Supports multiple host and target operating system + architecture combinations.

• Allows builds for all hosts and targets within a single <top> source directory tree.

• Allows sharing of components such as special record/device/drivers across <top> areas.

• gnumake is the only command used to build a <top> area.

Multiple host and target systems

You can build on multiple host systems and for multiple cross target systems using a single EPICS directory struc-
ture. The intermediate and binary files generated by the build will be created in separate O.* subdirectories and
installed into the appropriate separate host or target install directories. EPICS executables and scripts are installed
into the $(INSTALL_LOCATION)/bin/<arch> directories. Libraries are installed into $(INSTALL_LOCATION)/lib/
<arch>. The default definition for $(INSTALL_LOCATION) is $(TOP) which is the root directory in the directory
structure. Architecture dependant created files (e.g. object files) are stored in O.<arch> source subdirectories, and
architecture independent created files are stored in O.Common source subdirectories. This allows objects for multiple
cross target architectures to be maintained at the same time.

1.13. Application Developer’s Guide 71

EPICS Documentation

To build EPICS base for a specific host/target combination you must have the proper host/target c/c++ cross compiler
and target header files, CROSS_COMPILER_HOST_ARCHS must empty or include the host architecture in its list value,
the CROSS_COMPILER_TARGET_ARCHS variable must include the target to be cross-compiled, and the base/configure/
os directory must have the appropriate configure files.

Build Requirements

Host Environment Variable

Only one environment variable, EPICS_HOST_ARCH, is required to build EPICS <top> areas. This variable should be
set to be your workstation’s operating system - architecture combination to use the os vendor’s c/c++ compiler for native
builds or set to the operating system - architecture - alternate compiler combination to use an alternate compiler for
native builds if an alternate compiler is supported on your system. The filenames of the CONFIG.*.Common files in base/
configure/os show the currently supported EPICS_HOST_ARCH values. Examples are solaris-sparc, solaris-sparc-gnu,
linux-x86, win32-x86, and cygwin-x86.

Software Prerequisites

Before you can build EPICS components your host system must have the following software installed:

• Perl version 5.8 or greater

• GNU make, version 3.81 or greater

• C++ compiler (host operating system vendor’s compiler or GNU compiler)

If you will be building EPICS components for vxWorks targets you will also need:

• Tornado II or vxWorks 6.x or later, and one or more board support packages. Consult the vxWorks documentation
for details.

If you will be building EPICS components for RTEMS targets you will also need:

• RTEMS development tools and libraries required to run EPICS IOC applications.

Path requirements

You must have the perl executable in your path and you may need C and C++ compilers in your search path. Check
definitions of CC and CCC in base/configure/os/CONFIG.<host>.<host> or the definitions for GCC and G++ if
ANSI=GCC and CPLUSPLUS=GCC are specified in CONFIG_SITE. For building base you also must have echo in your
search path. You can override the default settings by defining PERL, CC and CCC, GCC and G++, GNU_DIR . . . in the
appropriate file (usually configure/os/CONFIG_SITE.$EPICS_HOST_ARCH.Common)

Unix path

For Unix host builds you also need touch, cpp, cp, rm, mv, and mkdir in your search path and /bin/chmod must
exist. On some Unix systems you may also need ar and ranlib in your path, and the c compiler may require ld in
your path.

72 Chapter 1. How this documentation is organized

EPICS Documentation

Win32 PATH

On WIN32 systems, building shared libraries is the default setting and you will need to add fullpathname to
$(INSTALL_LOCATION)/bin/$(EPICS_HOST_ARCH) to your path so the shared libraries, dlls, can be found during
the build. . . Building shared libraries is determined by the value of the macro SHARED_LIBRARIES in CONFIG_SITE
or os/CONFIG.Common.<host> (either YES or NO).

Directory names

Because the build rules allow make commands like make <dir>.<action>,<arch>, subdirectory names within a
<top> directory structure may not contain a period”.” character.

EPICS_HOST_ARCH environment variable

The startup directory in EPICS base contains a perl script, EpicsHostArch.pl, which can be used to define
EPICS_HOST_ARCH. This script can be invoked with a command line parameter defining the alternate compiler (e.g.
if invoking EpicsHostArch.pl yields solaris-sparc, then invoking EpicsHostArch.pl gnu will yield solaris-sparc-
gnu).

The startup directory also contains scripts to help users set the path and other environment variables.

Configuration Definitions

Site-specific EPICS Base Configuration

Site configuration

To configure EPICS base for your site, you may want to modify the default definitions in the following files:

• configure/CONFIG_SITE - Build choices. Specify target archs.

• configure/CONFIG_SITE_ENV - Environment variable defaults

Host configuration

To configure each host system for your site, you may override the default definitions in the configure/os directory by
adding a new file with override definitions. The new file should have the same name as the distribution file to be
overridden except CONFIG in the name is changed to CONFIG_SITE.

• configure/os/CONFIG_SITE.<host>.<host> - Host build settings

• configure/os/CONFIG_SITE.<host>.Common - Host build settings for all target systems

1.13. Application Developer’s Guide 73

EPICS Documentation

Target configuration

To configure each target system, you may override the default definitions in the configure/os directory by adding a new
file with override definitions. The new file should have the same name as the distribution file to be overridden except
CONFIG in the name is replaced by CONFIG_SITE.

• configure/os/CONFIG_SITE.Common.<target> - Target cross settings

• configure/os/CONFIG_SITE.<host>.<target> - Host-target settings

• configure/os/CONFIG_SITE.Common.vxWorksCommon - vxWorks full paths

R3.13 compatibility configuration

To configure EPICS base for building with R3.13 extensions and ioc applications, you must modify the default def-
initions in the base/config/CONFIG_SITE* files to agree with site definitions you made in base/configure and
base/configure/os files.You must also modify the following tow macros in the base/configure/CONFIG_SITE file:

• COMPAT_TOOLS_313 - Set to YES to build R3.13 extensions with this base.

• COMPAT_313 - Set to YES to build R3.13 ioc applications and extensions with this base.

Directory definitions

The configure files contain definitions for locations in which to install various components. These are all relative to
INSTALL_LOCATION. The default value for INSTALL_LOCATION is $(TOP), and $(T_A) is the current build’s target
architecture. The default value for INSTALL_LOCATION can be overridden in the configure/CONFIG_SITE file.

INSTALL_LOCATION_LIB = $(INSTALL_LOCATION)/lib
INSTALL_LOCATION_BIN = $(INSTALL_LOCATION)/bin

INSTALL_HOST_BIN = $(INSTALL_LOCATION_BIN)/$(EPICS_HOST_ARCH)
INSTALL_HOST_LIB = $(INSTALL_LOCATION_LIB)/$(EPICS_HOST_ARCH)

INSTALL_INCLUDE = $(INSTALL_LOCATION)/include
INSTALL_DOC = $(INSTALL_LOCATION)/doc
INSTALL_HTML = $(INSTALL_LOCATION)/html
INSTALL_TEMPLATES = $(INSTALL_LOCATION)/templates
INSTALL_DBD = $(INSTALL_LOCATION)/dbd
INSTALL_DB = $(INSTALL_LOCATION)/db
INSTALL_CONFIG = $(INSTALL_LOCATION)/configure
INSTALL_JAVA = $(INSTALL_LOCATION)/javalib

INSTALL_LIB = $(INSTALL_LOCATION_LIB)/$(T_A)
INSTALL_SHRLIB = $(INSTALL_LOCATION_LIB)/$(T_A)
INSTALL_TCLLIB = $(INSTALL_LOCATION_LIB)/$(T_A)
INSTALL_BIN = $(INSTALL_LOCATION_BIN)/$(T_A)

74 Chapter 1. How this documentation is organized

EPICS Documentation

Extension and Application Specific Configuration

The base/configure directory contains files with the default build definitions and site specific build definitions. The
extensions/configure directory contains extension specific build definitions (e.g. location of X11 and Motif libraries)
and include <filename> lines for the base/configure files. Likewise, the <application>/configure directory
contains application specific build definitions and includes for the application source files. Build definitions such as
CROSS_COMPILER_TARGET_ARCHS can be overridden in an extension or application by placing an override definition
in the <top>/configure/CONFIG_SITE file.

RELEASE file

Every <top>/configure directory contains a RELEASE file. RELEASE contains a user specified list of other <top>
directory structures containing files needed by the current <top>, and may also include other files to take those defi-
nitions from elsewhere. The macros defined in the RELEASE file (or its includes) may reference other defined macros,
but cannot rely on environment variables to provide definitions.

When make is executed, macro definitions for include, bin, and library directories are automatically generated for
each external <top> definition given in the RELEASE file. Also generated are include statements for any existing
RULES_BUILD files, cfg/RULES* files, and cfg/CONFIG* files from each external <top> listed in the RELEASE file.

For example, if configure/RELEASE contains the definition

CAMAC = /home/epics/modules/bus/camac

then the generated macros will be:

CAMAC_HOST_BIN = /home/epics/modules/bus/camac/bin/$(EPICS_HOST_ARCH)
CAMAC_HOST_LIB = /home/epics/modules/bus/camac/lib/$(EPICS_HOST_ARCH)
CAMAC_BIN = /home/epics/modules/bus/camac/bin/$(T_A)
CAMAC_LIB = /home/epics/modules/bus/camac/lib/$(T_A)
RELEASE_INCLUDES += -I/home/epics/modules/bus/camac/include/os
RELEASE_INCLUDES += -I/home/epics/modules/bus/camac/include
RELEASE_DBDFLAGS += -I /home/epics/modules/bus/camac/dbd
RELEASE_DBFLAGS += -I/home/epics/modules/bus/camac/db
RELEASE_PERL_MODULE_DIRS += /home/epics/modules/bus/camac/lib/perl

RELEASE_DBDFLAGSwill appear on the command lines for the dbToRecordTypeH, mkmf.pl, and dbExpand tools, and
RELEASE_INCLUDES will appear on compiler command lines. CAMAC_LIB and CAMAC_BIN can be used in a Makefile
to define the location of needed scripts, executables, object files, libraries or other files.

Definitions in configure/RELEASE can be overridden for a specific host and target architectures by providing the
appropriate file or files containing overriding definitions.

• configure/RELEASE.<epics_host_arch>.Common

• configure/RELEASE.Common.<targetarch>

• configure/RELEASE.<epics_host_arch>.<targetarch>

For <top> directory structures created by makeBaseApp.pl, an EPICS base perl script, convertRelease.pl can
perform consistency checks for the external <top> definitions in the RELEASE file and its includes as part of the <top>
level build. Consistancy checks are controlled by value of CHECK_RELEASE which is defined in <top>/configure/
CONFIG_SITE. CHECK_RELEASE can be set to YES, NO or WARN, and if YES (the default value), consistency checks will
be performed. If CHECK_RELEASE is set to WARN the build will continue even if conflicts are found.

1.13. Application Developer’s Guide 75

EPICS Documentation

Modifying configure/RELEASE* files

You should always do a gnumake clean uninstall in the <top> directory BEFORE adding, changing, or removing any
definitions in the configure/RELEASE* files and then a gnumake at the top level AFTER making the changes.

The file <top>/configure/RELEASE contains definitions for components obtained from outside <top>. If you want
to link to a new release of anything defined in the file do the following:

$ cd <top>
$ make clean uninstall

edit configure/RELEASE, and change the relevant line(s) to point to the new release

$ make

All definitions in <top>/configure/RELEASE must result in complete path definitions, i.e. relative path names are
not permitted. If your site could have multiple releases of base and other support <top> components installed at once,
these path definitions should contain a release number as one of the components. However as the RELEASE file is read
by gnumake, it is permissible to use macro substitutions to define these pathnames, for example:

SUPPORT = /usr/local/iocapps/R3.14.9
EPICS_BASE = $(SUPPORT)/base/3-14-9-asd1

OS Class specific definitions

Definitions in a Makefile will apply to the host system (the platform on which make is executed) and each system
defined by CROSS_COMPILER_TARGET_ARCHS.

It is possible to limit the architectures for which a particular definition is used. Most Makefile definition names can
be specified with an appended underscore “_” followed by an osclass name. If an _<osclass> is not specified, then
the definition applies to the host and all CROSS_COMPILER_TARGET_ARCHS systems. If an _<osclass> is specified,
then the definition applies only to systems with the specified os class. A Makefile definition can also have an appended
_DEFAULT specification. If _DEFAULT is appended, then the Makefile definition will apply to all systems that do not
have an _<osclass> specification for that definition. If a _DEFAULT definition exists but should not apply to a particular
system OS Class, the value -nil- should be specified in the relevant Makefile definition.

Each system has an OS_CLASS definition in its configure/os/CONFIG.Common.<arch> file. A few examples are:

• For vxWorks-* targets OS_CLASS is vxWorks.

• For RTEMS-* targets OS_CLASS is RTEMS.

• For solaris-* targets OS_CLASS is solaris.

• For win32-* targets OS_CLASS is WIN32.

• For linux-* targets OS_CLASS is Linux.

• For darwin-* targets OS_CLASS is Darwin.

• For aix-* targets OS_CLASS is AIX.

For example the following Makefile lines specify that product aaa should be created for all systems. Product bbb should
be created for systems that do not have OS_CLASS defined as solaris.

PROD = aaa
PROD_solaris = -nil-
PROD_DEFAULT = bbb

76 Chapter 1. How this documentation is organized

EPICS Documentation

Specifying T_A specific definitions

It is possible for the user to limit the systems for which a particular definition applies to specific target systems.

For example the following Makefile lines specify that product aaa should be created for all target architecture which
allow IOC type products and product bbb should be created only for the vxWorks-68040 and vxWorks-ppc603 targets.
Remember T_A is the build’s current target architecture. so PROD_IOC has the bbb value only when the current built
target architecture is vwWorks-68040 or vxWorks-ppc603

PROD_IOC = aaa
VX_PROD_vxWorks-68040 = bbb
VX_PROD_vxWorks-ppc603 = bbb
PROD_IOC += VX_PROD_$(T_A)

Host and Ioc targets

Build creates two type of makefile targets: Host and Ioc. Host targets are executables, object files, libraries, and scripts
which are not part of iocCore. Ioc targets are components of ioc libraries, executables, object files, or iocsh scripts
which will be run on an ioc.

Each supported target system has a VALID_BUILDS definition which specifies the type of makefile targets it can support.
This definition appears in configure/os/CONFIG.Common.<arch> or configure/os/CONFIG.<arch>.<arch>
files.

• For vxWorks systems VALID_BUILDS is set to “Ioc”.

• For Unix type systems, VALID_BUILDS is set to “Host Ioc”.

• For RTEMS systems, VALID_BUILDS is set to “Ioc”.

• For WIN32 systems, VALID_BUILDS is set to “Host Ioc”.

In a Makefile it is possible to limit the systems for which a particular PROD, TESTPROD, LIBRARY, SCRIPTS, and OBJS
is built. For example the following Makefile lines specify that product aaa should be created for systems that support
Host type builds. Product bbb should be created for systems that support Ioc type builds. Product ccc should be created
for all target systems.

PROD_HOST = aaa
PROD_IOC = bbb
PROD = ccc

These definitions can be further limited by specifying an appended underscore “_” followed by an osclass or DEFAULT
specification.

User specific override definitions

User specific override definitions are allowed in user created files in the user’s <home>/configure subdirectory. These
override definitions will be used for builds in all <top> directory structures. The files must have the following names.

• <home>/configure/CONFIG_USER

• <home>/configure/CONFIG_USER.<epics_host_arch>

• <home>/configure/CONFIG_USER.Common.<targetarch>

• <home>/configure/CONFIG_USER.<epics_host_arch>.<targetarch>

1.13. Application Developer’s Guide 77

EPICS Documentation

Makefiles

Name

The name of the makefile in each directory must be Makefile.

Included Files

Makefiles normally include files from <top>/configure. Thus the makefile “inherits” rules and definitions from
configure. The files in <top>/configure may in turn include files from another <top>/configure. This technique
makes it possible to share make variables and even rules across <top> directories.

Contents of Makefiles

Makefiles in directories containing subdirectories

A Makefile in this type of directory must define where <top> is relative to this directory, include <top>/configure
files, and specify the subdirectories in the desired order of make execution. Running gnumake in a directory with the
following Makefile lines will cause gnumake to be executed in first and then . The build rules do not allow a Makefile
to specify both subdirectories and components to be built.

TOP=../..
include $(TOP)/configure/CONFIG
DIRS += <dir1> <dir2>
include $(TOP)/configure/RULES_DIRS

Makefiles in directories where components are to be built

A Makefile in this type of directory must define where <top> is relative to this directory, include <top> configure
files, and specify the target component definitions. Optionally it may contain user defined rules. Running gnumake in a
directory with this type of Makefile will cause gnumake to create an O.<arch> subdirectory and then execute gnumake
to build the defined components in this subdirectory. It contains the following lines:

TOP=../../..
include $(TOP)/configure/CONFIG
<component definition lines>
include $(TOP)/configure/RULES
<optional rules definitions>

Simple Makefile examples

Create an IOC type library named asIoc from the source file asDbLib.c and install it into the $(INSTALL_LOCATION)/
lib/<arch> directory.

TOP=../../..
include $(TOP)/configure/CONFIG
LIBRARY_IOC += asIoc
asIoc_SRCS += asDbLib.c
include $(TOP)/configure/RULES

78 Chapter 1. How this documentation is organized

EPICS Documentation

For each Host type target architecture, create an executable named catest from the catest1.c and catest2.c
source files linking with the existing EPICS base ca and Com libraries, and then install the catest executable into
the $(INSTALL_LOCATION)/bin/<arch> directory.

TOP=../../..
include $(TOP)/configure/CONFIG
PROD_HOST = catest
catest_SRCS += catest1.c catest2.c
catest_LIBS = ca Com
include $(TOP)/configure/RULES

Make

Make vs. gnumake

EPICS provides an extensive set of make rules. These rules only work with the GNU version of make, gnumake, which
is supplied by the Free Software Foundation. Thus, on most Unix systems, the native make will not work. On some
systems, e.g. Linux, GNU make may be the default. This manual always uses gnumake in the examples.

Frequently used Make commands

NOTE

It is possible to invoke the following commands for a single target architecture by appending <arch> to the target in
the command.

The most frequently used make commands are:

gnumake
This rebuilds and installs everything that is not up to date.

NOTE

Executing gnumake without arguments is the same as gnumake install

gnumake help
This command can be executed from the <top> directory only. This command prints a page describing the most
frequently used make commands.

gnumake install
This rebuilds and installs everything that is not up to date.

gnumake all
This is the same as gnumake install.

gnumake buildInstall
This is the same as gnumake install.

gnumake
This rebuilds and installs everything that is not up to date first for the host arch and then (if different) for the
specified target arch.

1.13. Application Developer’s Guide 79

EPICS Documentation

NOTE

This is the same as gnumake install.<arch>

gnumake clean
This can be used to save disk space by deleting the O.<arch> directories that gnumake will create, but does not
remove any installed files from the bin, db, dbd etc. directories. gnumake clean.<arch> can be invoked to
clean a single architecture.

gnumake archclean
This command will remove the current build’s O.<arch> directories but not O.Common directory.

gnumake realclean
This command will remove ALL the O.<arch> subdirectories (even those created by a gnumake from another
EPICS_HOST_ARCH).

gnumake rebuild
This is the same as gnumake clean install. If you are unsure about the state of the generated files in an
application, just execute gnumake rebuild.

gnumake uninstall
This command can be executed from the <top> directory only. It will remove everything installed by gnumake
in the include, lib, bin, db, dbd, etc. directories.

gnumake realuninstall
This command can be executed from the <top> directory only. It will remove all the install directories, include,
lib, bin, db, dbd, etc.

gnumake distclean
This command can be executed from the <top> directory only. It is the same as issuing both the realclean and
realuninstall commands.

gnumake cvsclean
This command can be executed from the <top> directory only. It removes cvs .#* files in the make directory
tree.

Make targets

The following is a summary of targets that can be specified for gnumake:

• <action>

• <arch>

• <action>.<arch>

• <dir>

• <dir>.<action>

• <dir>.<arch>

• <dir>.<action>.<arch>

where:

• <action> is help, clean, realclean, distclean, inc, install, build, rebuild, buildInstall, realuninstall, or uninstall

• <arch> is an architecture such as solaris-sparc, vxWorks-68040, win32-x86, etc.

• <dir> is a path in module directory.

80 Chapter 1. How this documentation is organized

EPICS Documentation

NOTE

help, uninstall, distclean, cvsclean, and realuninstall can only be specified at <top>.

realclean cannot be specified inside an O.<arch> subdirectory. <dir> is subdirectory name

NOTE

You can build using your os vendor’s native compiler and also build using a supported alternate compiler in the same
directory structure because the executables and libraries will be created and installed into separate directories (e.g
bin/solaris-sparc and bin/solaris-sparc-gnu). You can do this by changing your EPICS_HOST_ARCH, environment vari-
able between builds or by setting EPICS_HOST_ARCH on the gnumake command line.

The build system ensures the host architecture is up to date before building a cross-compiled target, thus Makefiles
must be explicit in defining which architectures a component should be built for.

Header file dependencies

All product, test product, and library source files which appear in one of the source file definitions (e.g. SRCS,
PROD_SRCS, LIB_SRCS, <prodname>_SRCS) will have their header file dependencies automatically generated and
included as part of the Makefile.

Makefile definitions

The following components can be defined in a Makefile:

Source file directories

Normally all product, test product, and library source files reside in the same directory as the Makefile. OS specific
source files are allowed and should reside in subdirectories os/<os_class> or os/posix or os/default.

The build rules also allow source files to reside in subdirectories of the current Makefile directory (src directory). For
each subdirectory <dir> containing source files add the SRC_DIRS definition.

SRC_DIRS += <dir>

where <dir> is a relative path definition. An example of SRC_DIRS is

SRC_DIRS += ../dir1 ../dir2

The directory search order for the above definition is

. ../os/$(OS_CLASS) ../os/posix ../os/default ../dir1/os/$(OS_CLASS)

../dir1/os/posix ../dir1/os/default ../dir2/os/$(OS_CLASS)

../dir2/os/posix ../dir2/os/default/dir1 ../dir2

where the build directory O.<arch> is . and the src directory is . . .

1.13. Application Developer’s Guide 81

EPICS Documentation

Posix C source code

The epics base config files assume posix source code and define POSIX to be YES as the default. Individual Makefiles
can override this by setting POSIX to NO. Source code files may have the suffix .c, .cc, .cpp, or .C.

Breakpoint Tables

For each breakpoint table dbd file, bpt<table name>.dbd, to be created from an existing bpt<table name>.data
file, add the definition

DBD += bpt<table name>.dbd

to the Makefile. The following Makefile will create a bptTypeJdegC.dbd file from an existing bptTypeJdegC.data
file using the EPICS base utility program makeBpt and install the new dbd file into the $(INSTALL_LOCATION)/dbd
directory.

TOP=../../..
include $(TOP)/configure/CONFIG
DBD += bptTypeJdegC.dbd
include $(TOP)/configure/RULES

Record Type Definitions

For each new record type, the following definition should be added to the makefile:

DBDINC += <rectype>Record

A <rectype>Record.h header file will be created from an existing <rectype>Record.dbd file using the EPICS base
utility program dbToRecordTypeH. This header will be installed into the $(INSTALL_LOCATION)/include directory
and the dbd file will be installed into the $(INSTALL_LOCATION)/dbd directory.

The following Makefile will create xxxRecord.h from an existing xxxRecord.dbd file, install xxxRecord.h into
$(INSTALL_LOCATION)/include, and install xxxRecord.dbd into $(INSTALL_LOCATION)/dbd.

TOP=../../..
include $(TOP)/configure/CONFIG
DBDINC += xxxRecord
include $(TOP)/configure/RULES

Menus

If a menu menu<name>.dbd file is present, then add the following definition:

DBDINC += menu<name>.h

The header file, menu<name>.h will be created from the existing menu<name>.dbd file using the EPICS base utility
program dbToMenuH and installed into the $(INSTALL_LOCATION)/include directory and the menu dbd file will be
installed into $(INSTALL_LOCATION)/dbd.

The following Makefile will create a menuConvert.h file from an existing menuConvert.dbd file and install
menuConvert.h into $(INSTALL_LOCATION)/include and menuConvert.dbd into $(INSTALL_LOCATION)/dbd.

82 Chapter 1. How this documentation is organized

EPICS Documentation

TOP=../../..
include $(TOP)/configure/CONFIG
DBDINC = menuConvert.h
include $(TOP)/configure/RULES

Expanded Database Definition Files

Database definition include files named <name>Include.dbd containing includes for other database definition files
can be expanded by the EPICS base utility program dbExpand into a created <name>.dbd file and the <name>.dbd
file installed into $(INSTALL_LOCATION)/dbd. The following variables control the process:

DBD += <name>.dbd
USR_DBDFLAGS += -I <include path>
USR_DBDFLAGS += -S <macro substitutions>
<name>_DBD += <file1>.dbd <file2>.dbd ...

where

DBD += <name>.dbd

is the name of the output dbd file to contain the expanded definitions. It is created by expanding an existing or build
created <name>Include.dbd file and then copied into $(INSTALL_LOCATION)/dbd.

An example of a file to be expanded is exampleInclude.dbd containing the following lines

include "base.dbd"
include "xxxRecord.dbd"
device(xxx,CONSTANT,devXxxSoft,"SoftChannel")

USR_DBDFLAGS defines optional flags for dbExpand. Currently only an include path (-I <path>) and macro substitu-
tion (-S <substitution>) are supported. The include paths for EPICS base/dbd, and other <top>/dbd directories
will automatically be added during the build if the <top> names are specified in the configure/RELEASE file.

A database definition include file named <name>Include.dbd containing includes for other database definition files
can be created from a <name>_DBD definition. The lines

DBD += <name>.dbd
<name>_DBD += <file1>.dbd <file2>.dbd ...

will create an expanded dbd file <name>.dbd by first creating a <name>Include.dbd. For each filename in
the <name>_DBD definition, the created <name>Include.dbd will contain an include statement for that file-
name. Then the expanded DBD file is generated from the created <name>Include.dbd file and installed into
$(INSTALL_LOCATION)/dbd.

The following Makefile will create an expanded dbd file named example.dbd from an existing exampleInclude.dbd
file and then install example.dbd into the $(INSTALL_LOCATION)/dbd directory.

TOP=../../..
include $(TOP)/configure/CONFIG
DBD += exampleApp.dbd
include $(TOP)/configure/RULES

The following Makefile will create an exampleInclude.dbd file from the example_DBD definition then expand it to
create an expanded dbd file, example.dbd, and install example.dbd into the $(INSTALL_LOCATION)/dbd directory.

1.13. Application Developer’s Guide 83

EPICS Documentation

TOP=../../..
include $(TOP)/configure/CONFIG
DBD += example.dbd
example_DBD += base.dbd xxxRecord.dbd xxxSupport.dbd
include $(TOP)/configure/RULES

The created exampleInclude.dbd file will contain the following lines

include "base.dbd"
include "xxxRecord.dbd"
include "xxxSupport.dbd"

Registering Support Routines for Expanded Database Definition Files

A source file which registers simple static variables and record/device/driver support routines with iocsh can be created.
The list of variables and routines to register is obtained from lines in an existing dbd file.

The following line in a Makefile will result in <name>_registerRecordDeviceDriver.cpp being created, compiled,
and linked into <prodname>. It requires that the file <name>.dbd exist or can be created using other make rules.

<prodname>_SRCS += <name>_registerRecordDeviceDriver.cpp

An example of registering the variable mySubDebug and the routines mySubInit and mySubProcess is <name>.dbd
containg the following lines

variable(mySubDebug)
function(mySubInit)
function(mySubProcess)

Database Definition Files

The following line installs the existing named dbd files into $(INSTALL_LOCATION)/dbd without expansion.

DBD += <name>.dbd

DBD install files

Definitions of the form:

DBD_INSTALLS += <name>

result in files being installed to the $(INSTALL_LOCATION)/dbd directory. The file <name> can appear with or without
a directory prefix. If the file has a directory prefix e.g. $(APPNAME)/dbd/, it is copied from the specified location. If
a directory prefix is not present, make will look in the current source directory for the file.

84 Chapter 1. How this documentation is organized

EPICS Documentation

Database Files

For most databases just the name of the database has to be specified. Make will figure out how to generate the file:

DB += xxx.db

generates xxx.db depending on which source files exist and installs it into $(INSTALL_LOCATION)/db.

A <name>.db database file will be created from an optional <name>.template file and/or an optional <name>.
substitutions file, If the substitution file exists but the template file is not named <name>.template, the template
file name can be specified as

<name>_TEMPLATE = <template file name>

A *<nn>.db database file will be created from a *.template and a *<nn>.substitutions file, (where nn is an
optional index number).

If a <name> substitutions file contains “file” references to other input files, these referenced files are made dependencies
of the created <name>.db by the makeDbDepends.pl perl tool.

The Macro Substitutions and Include tool, msi, will be used to generate the database, and msi must either be in your
path or you must redefine MSI as the full path name to the msi binary in a RELEASE file or Makefile. An example MSI
definition is

MSI = /usr/local/epics/extensions/bin/${EPICS_HOST_ARCH}/msi

Template files <name>.template, and db files, <name>.db, will be created from an edf file <name>.edf and an
<name>.edf file will be created from a <name>.sch file.

Template and substitution files can be installed.

DB += xxx.template xxx.substitutions

generates and installs these files. If one or more xxx.substitutions files are to be created by script, the script name
must be placed in the CREATESUBSTITUTIONS variable (e.g. CREATESUBSTITUTIONS=mySubst.pl). This script will
be executed by gnumake with the prefix of the substitution file name to be generated as its argument. If (and only if)
there are script generated substitutions files, the prefix of any inflated database’s name may not equal the prefix of the
name of any template used within the directory.

DB install files

Definitions of the form:

DB_INSTALLS += <name>

result in files being installed to the $(INSTALL_LOCATION)/db directory. The file <name> can appear with or without
a directory prefix. If the file has a directory prefix e.g. $(APPNAME)/db/, it is copied from the specified location. If a
directory prefix is not present, make will look in the current source directory for the file.

1.13. Application Developer’s Guide 85

EPICS Documentation

Compile and link command options

Any of the following can be specified:

Options for all compile/link commands.

These definitions will apply to all compiler and linker targets.

USR_INCLUDES += -I<name>

header file directories each prefixed by a -I.

USR_INCLUDES_<osclass> += -I<name>

os specific header file directories each prefixed by a -I.

USR_INCLUDES_DEFAULT += -I<name>

header file directories each prefixed by -I for any arch that does not have a USR_INCLUDE_<osclass> definition

USR_CFLAGS += <c flags>

C compiler options.

USR_CFLAGS_<osclass> += <c flags>

os specific C compiler options.

USR_CFLAGS_<arch> += <c flags>

target architecture specific C compiler options.

USR_CFLAGS_DEFAULT += <c flags>

C compiler options for any arch that does not have a USR_CFLAGS_<osclass> definition

USR_CXXFLAGS += <c++ flags>

C++ compiler options.

USR_CXXFLAGS_<osclass> += <c++ flags>

C++ compiler options for the specified osclass.

USR_CXXFLAGS_<arch> += <c++ flags>

C++ compiler options for the specified target architecture.

USR_CXXFLAGS_DEFAULT += <c++ flags>

C++ compiler options for any arch that does not have a USR_CXXFLAGS_<osclass> definition

USR_CPPFLAGS += <preprocessor flags>

C preprocessor options.

86 Chapter 1. How this documentation is organized

EPICS Documentation

USR_CPPFLAGS_<osclass> += <preprocessor flags>

os specific C preprocessor options.

USR_CPPFLAGS_<arch> += <preprocessor flags>

target architecture specific C preprocessor options.

USR_CPPFLAGS_DEFAULT += <preprocessor flags>

C preprocessor options for any arch that does not have a USR_CPPFLAGS_<osclass> definition

USR_LDFLAGS += <linker flags>

linker options.

USR_LDFLAGS_<osclass> += <linker flags>

os specific linker options.

USR_LDFLAGS_DEFAULT += <linker flags>

linker options for any arch that does not have a USR_LDFLAGS_<osclass> definition

Options for a target specific compile/link command.

<name>_INCLUDES += -I<name>

header file directories each prefixed by a -I.

<name>_INCLUDES_<osclass> += -I<name>

os specific header file directories each prefixed by a -I.

<name>_INCLUDES_<T_A> += -I<name>

target architecture specific header file directories each prefixed by a -I.

<name>_CFLAGS += <c flags>

c compiler options.

<name>_CFLAGS_<osclass> += <c flags>

os specific c compiler options.

<name>_CFLAGS_<T_A> += <c flags>

target architecture specific c compiler options.

<name>_CXXFLAGS += <c++ flags>

c++ compiler options.

1.13. Application Developer’s Guide 87

EPICS Documentation

<name>_CXXFLAGS_<osclass> += <c++ flags>

c++ compiler options for the specified osclass.

<name>_CXXFLAGS_<T_A> += <c++ flags>

c++ compiler options for the specified target architecture.

<name>_CPPFLAGS += <preprocessor flags>

c preprocessor options.

<name>_CPPFLAGS_<osclass> += <preprocessor flags>

os specific c preprocessor options.

<name>_CPPFLAGS_<T_A> += <preprocessor flags>

target architecture specific c preprocessor options.

<name>_LDFLAGS += <linker flags>

linker options.

<name>_LDFLAGS_<osclass> += <linker flags>

os specific linker options.

Libraries

A library is created and installed into $(INSTALL_LOCATION)/lib/<arch> by specifying its name and the name of
the object and/or source files containing code for the library. An object or source file name can appear with or without
a directory prefix. If the file name has a directory prefix e.g. $(EPICS_BASE_BIN), it is taken from the specified
location. If a directory prefix is not present, make will first look in the source directories for a file with the specified
name and next try to create the file using existing configure rules. A library filename prefix may be prepended to the
library name when the file is created. For Unix type systems and vxWorks the library prefix is lib and there is no prefix
for WIN32. Also a library suffix appropriate for the library type and target arch (e.g. .a, .so, .lib, .dll) will be appended
to the filename when the file is created.

vxWorks and RTEMS

Only archive libraries are created.

Shared libraries

Shared libraries can be built for any or all HOST type architectures. The definition of SHARED_LIBRARIES
(YES/NO) in base/configure/CONFIG_SITE determines whether shared or archive libraries will be built. When
SHARED_LIBRARIES is YES, both archive and shared libraries are built. This definition can be overridden for a specific
arch in an configure/os/CONFIG_SITE.<arch>.Common file. The default definition for SHARED_LIBRARIES in the
EPICS base distribution file is YES for all host systems.

88 Chapter 1. How this documentation is organized

EPICS Documentation

Win32

An object library file is created when SHARED_LIBRARIES=NO, <name>.lib which is installed into
$(INSTALL_LOCATION)/lib/<arch>. Two library files are created when SHARED_LIBRARIES=YES, <name>.
lib, an import library for DLLs, which is installed into $(INSTALL_LOCATION)/lib/<arch>, and <name>.dll
which is installed into $(INSTALL_LOCATION)/bin/<arch>. (Warning: The file <name>.lib will only be
created by the build if there are exported symbols from the library.) If SHARED_LIBRARIES=YES, the directory
$(INSTALL_LOCATION)/bin/<arch> must be in the user’s path during builds to allow invoking executables which
were linked with shared libraries.

Note that the <name>.lib files are different for shared and nonshared builds.

Specifying the library name.

Any of the following can be specified:

LIBRARY += <name>

A library will be created for every target arch.

LIBRARY_<osclass> += <name>

Library <name> will be created for all archs of the specified osclass.

LIBRARY_DEFAULT += <name>

Library <name> will be created for any arch that does not have a LIBRARY_<osclass> definition

LIBRARY_IOC += <name>

Library <name> will be created for IOC type archs.

LIBRARY_IOC_<osclass> += <name>

Library <name> will be created for all IOC type archs of the specified osclass.

LIBRARY_IOC_DEFAULT += <name>

Library <name> will be created for any IOC type arch that does not have a LIBRARY_IOC_<osclass> definition

LIBRARY_HOST += <name>

Library <name> will be created for HOST type archs.

LIBRARY_HOST_<osclass> += <name>

Library <name> will be created for all HOST type archs of the specified osclass.

LIBRARY_HOST_DEFAULT += <name>

Library <name> will be created for any HOST type arch that does not have a LIBRARY_HOST_<osclass> definition

1.13. Application Developer’s Guide 89

EPICS Documentation

Specifying library source file names

Source file names, which must have a suffix, are defined as follows:

SRCS += <name>

Source files will be used for all defined libraries and products.

SRCS_<osclass> += <name>

Source files will be used for all defined libraries and products for all archs of the specified osclass.

SRCS_DEFAULT += <name>

Source files will be used for all defined libraries and products for any arch that does not have a SRCS_<osclass>
definition

LIBSRCS and LIB_SRCS have the same meaning. LIBSRCS is deprecated, but retained for R3.13 compatibility.

LIBSRCS += <name>

Source files will be used for all defined libraries.

LIBSRCS_<osclass> += <name>

Source files will be used for all defined libraries for all archs of the specified osclass.

LIBSRCS_DEFAULT += <name>

Source files will be used for all defined libraries for any arch that does not have a LIBSRCS_<osclass> definition

USR_SRCS += <name>

Source files will be used for all defined products and libraries.

USR_SRCS_<osclass> += <name>

Source files will be used for all defined products and libraries for all archs of the specified osclass.

USR_SRCS_DEFAULT += <name>

Source files will be used for all defined products and libraries for any arch that does not have a USR_SRCS_<osclass>
definition

LIB_SRCS += <name>

Source files will be used for all libraries.

LIB_SRCS_<osclass> += <name>

Source files will be used for all defined libraries for all archs of the specified osclass.

LIB_SRCS_DEFAULT += <name>

Source files will be used for all defined libraries for any arch that does not have a LIB_SRCS_<osclass> definition

90 Chapter 1. How this documentation is organized

EPICS Documentation

<libname>_SRCS += <name>

Source files will be used for the named library.

<libname>_SRCS_<osclass> += <name>

Source files will be used for named library for all archs of the specified osclass.

<libname>_SRCS_DEFAULT += <name>

Source files will be used for named library for any arch that does not have a <libname>_SRCS_<osclass> definition

Specifying library object file names

Library object file names should only be specified for object files which will not be built in the current directory. For
object files built in the current directory, library source file names should be specified. See Specifying Library Source
File Names above.

Object files which have filename with a “.o” or “.obj” suffix are defined as follows and can be specified without the
suffix but should have the directory prefix

USR_OBJS += <name>

Object files will be used in builds of all products and libraries

USR_OBJS_<osclass> += <name>

Object files will be used in builds of all products and libraries for archs with the specified osclass.

USR_OBJS_DEFAULT += <name>

Object files will be used in builds of all products and libraries for archs without a USR_OBJS_<osclass> definition
specified.

LIB_OBJS += <name>

Object files will be used in builds of all libraries.

LIB_OBJS_<osclass> += <name>

Object files will be used in builds of all libraries for archs of the specified osclass.

LIB_OBJS_DEFAULT += <name>

Object files will be used in builds of all libraries for archs without a LIB_OBJS_<osclass> definition specified.

<libname>_OBJS += <name>

Object files will be used for all builds of the named library)

<libname>_OBJS_<osclass> += <name>

Object files will be used in builds of the library for archs with the specified osclass.

1.13. Application Developer’s Guide 91

EPICS Documentation

<libname>_OBJS_DEFAULT += <name>

Object files will be used in builds of the library for archs without a <libname>_OBJS_<osclass> definition specified.

Combined object files, from R3.13 built modules and applications which have file names that do not include a “.o” or
“.obj” suffix (e.g. xyzLib) are defined as follows:

USR_OBJLIBS += <name>

Combined object files will be used in builds of all libraries and products.

USR_OBJLIBS_<osclass> += <name>

Combined object files will be used in builds of all libraries and products for archs of the specified osclass.

USR_OBJLIBS_DEFAULT += <name>

Combined object files will be used in builds of all libraries and products for archs without a USR_OBJLIBS_<osclass>
definition specified.

LIB_OBJLIBS += <name>

Combined object files will be used in builds of all libraries.

LIB_OBJLIBS_<osclass> += <name>

Combined object files will be used in builds of all libraries for archs of the specified osclass.

LIB_OBJLIBS_DEFAULT += <name>

Combined object files will be used in builds of all libraries for archs without a LIB_OBJLIBS_<osclass> definition
specified.

<libname>_OBJLIBS += <name>

Combined object files will be used for all builds of the named library.

<libname>_OBJLIBS_<osclass> += <name>

Combined object files will be used in builds of the library for archs with the specified osclass.

<libname>_OBJLIBS_DEFAULT += <name>

Combined object files will be used in builds of the library for archs without a <libname>_OBJLIBS_<osclass>
definition specified.

<libname>_LDOBJS += <name>

Combined object files will be used for all builds of the named library. (deprecated)

<libname>_LDOBJS_<osclass> += <name>

Combined object files will be used in builds of the library for archs with the specified osclass. (deprecated)

<libname>_LDOBJS_DEFAULT += <name>

92 Chapter 1. How this documentation is organized

EPICS Documentation

Combined object files will be used in builds of the library for archs without a <libname>_LDOBJS_<osclass> defi-
nition specified. (deprecated)

LIBOBJS definitions

Previous versions of epics (3.13 and before) accepted definitions like:

LIBOBJS += $(<support>_BIN)/xxx.o

These are gathered together in files such as baseLIBOBJS. To use such definitions include the lines:

-include ../baseLIBOBJS
<libname>_OBJS += $(LIBOBJS)

Note:

vxWorks applications created by makeBaseApp.pl from 3.14 Base releases no longer have a file named baseLIBOBJS.
Base record and device support now exists in archive libraries.*

Specifying dependant libraries to be linked when creating a library

For each library name specified which is not a system library nor a library from an EPICS top defined in the configure/
RELEASE file, a <name>_DIR definition must be present in the Makefile to specify the location of the library.

Library names, which must not have a directory and “lib” prefix nor a suffix, are defined as follows:

LIB_LIBS += <name>

Libraries to be used when linking all defined libraries.

LIB_LIBS_<osclass> += <name>

Libraries to be used or all archs of the specified osclass when linking all defined libraries.

LIB_LIBS_DEFAULT += <name>

Libraries to be used for any arch that does not have a LIB_LIBS_<osclass> definition when linking all defined li-
braries.

USR_LIBS += <name>

Libraries to be used when linking all defined products and libraries.

USR_LIBS_<osclass> += <name>

Libraries to be used or all archs of the specified osclasswhen linking all defined products and libraries.

USR_LIBS_DEFAULT += <name>

Libraries to be used for any arch that does not have a USR_LIBS_<osclass> definition when linking all defined prod-
ucts and libraries.

1.13. Application Developer’s Guide 93

EPICS Documentation

<libname>_LIBS += <name>

Libraries to be used for linking the named library.

<libname>_LIBS_<osclass> += <name>

Libraries will be used for all archs of the specified osclass for linking named library.

<libname>_LIBS_DEFAULT += <name>

Libraries to be used for any arch that does not have a <libname>_LIBS_<osclass> definition when linking named
library.

<libname>_SYS_LIBS += <name>

System libraries to be used for linking the named library.

<libname>_SYS_LIBS_<osclass> += <name>

System libraries will be used for all archs of the specified osclass for linking named library.

<libname>_SYS_LIBS_DEFAULT += <name>

System libraries to be used for any arch that does not have a <libname>_LIBS_<osclass> definition when linking
named library.

The order of dependant libraries

Dependant library names appear in the following order on a library link line:

1. <libname>_LIBS

2. <libname>_LIBS_<osclass> or <libname>_LIBS_DEFAULT

3. LIB_LIBS

4. LIB_LIBS_<osclass> or LIB_LIBS_DEFAULT

5. USR_LIBS

6. USR_LIBS_<osclass> or USR_LIBS_DEFAULT

7. <libname>_SYS_LIBS

8. <libname>_SYS_LIBS_<osclass> or <libname>_SYS_LIBS_DEFAULT

9. LIB_SYS_LIBS

10. LIB_SYS_LIBS_<osclass> or LIB_SYS_LIBS_DEFAULT

11. USR_SYS_LIBS

12. USR_SYS_LIBS_<osclass> or USR_SYS_LIBS_DEFAULT

94 Chapter 1. How this documentation is organized

EPICS Documentation

Specifying library DLL file names (deprecated)

WIN32 libraries require all external references to be resolved, so if a library contains references to items in other DLL
libraries, these DLL library names must be specified (without directory prefix and without “.dll” suffix) as follows:

DLL_LIBS += <name>

These DLLs will be used for all libraries.

<libname>_DLL_LIBS += <name>

These DLLs will be used for the named library.

Each <name> must have a corresponding <name>_DIR definition specifying its directory location.

Specifying shared library version number

A library version number can be specified when creating a shared library as follows:

SHRLIB_VERSION = <version>

On WIN32 this results in /version:$(SHRLIB_VERSION) link option. On Unix type hosts .$(SHRLIB_VERSION)
is appended to the shared library name and a symbolic link is created for the unversioned library name.
$(EPICS_VERSION).$(EPICS_REVISION) is the default value for SHRLIB_VERSION.

Library example:

LIBRARY_vxWorks += vxWorksOnly
LIBRARY_IOC += iocOnly
LIBRARY_HOST += hostOnly
LIBRARY += all
vxWorksOnly_OBJS += $(LINAC_BIN)/vxOnly1
vxWorksOnly_SRCS += vxOnly2.c
iocOnly_OBJS += $(LINAC_BIN)/iocOnly1
iocOnly_SRCS += iocOnly2.cpp
hostOnly_OBJS += $(LINAC_BIN)/host1
all_OBJS += $(LINAC_BIN)/all1
all_SRCS += all2.cpp

If the architectures defined in <top>/configure are solaris-sparc and vxWorks-68040 and LINAC is defined in the
<top>/configure/RELEASE file, then the following libraries will be created:

• $(INSTALL_LOCATION)/bin/vxWork-68040/libvxWorksOnly.a : $(LINAC_BIN)/vxOnly1.o
vxOnly2.o

• $(INSTALL_LOCATION)/bin/vxWork-68040/libiocOnly.a : $(LINAC_BIN/iocOnly1.o iocOnly2.o

• $(INSTALL_LOCATION)/lib/solaris-sparc/libiocOnly.a : $(LINAC_BIN)/iocOnly1.o iocOnly2.
o

• $(INSTALL_LOCATION)/lib/solaris-sparc/libhostOnly.a : $(LINAC_BIN)/host1.o

• $(INSTALL_LOCATION)/bin/vxWork-68040/liball.a : $(LINAC_BIN)/all1.o all2.o

• $(INSTALL_LOCATION)/lib/solaris-sparc/liball.a : $(LINAC_BIN)/all1.o all2.o

1.13. Application Developer’s Guide 95

EPICS Documentation

Loadable libraries

Loadable libraries are regular libraries which are not required to have all symbols resolved during the build. The intent
is to create dynamic plugins so no archive library is created. Source file, object files, and dependant libraries are
specified in exactly the same way as for regular libraries.

Any of the following can be specified:

LOADABLE_LIBRARY += <name>

The <name> loadable library will be created for every target arch.

LOADABLE_LIBRARY_<osclass> += <name>

Loadable library <name> will be created for all archs of the specified osclass.

LOADABLE_LIBRARY_DEFAULT += <name>

Loadable library <name> will be created for any arch that does not have a LOADABLE_LIBRARY_<osclass> definition

LOADABLE_LIBRARY_HOST += <name>

Loadable library <name> will be created for HOST type archs.

LOADABLE_LIBRARY_HOST_<osclass> += <name>

Loadable library <name> will be created for all HOST type archs of the specified osclass.

LOADABLE_LIBRARY_HOST_DEFAULT += <name>

Loadable library <name> will be created for any HOST type arch that does not have a
LOADABLE_LIBRARY_HOST_<osclass> definition

Combined object libraries (VxWorks only)

Combined object libraries are regular combined object files which have been created by linking together multiple
object files. OBJLIB specifications in the Makefile create a combined object file and a corresponding munch file for
vxWorks target architectures only. Combined object libraries have a Library.o suffix. It is possible to generate and
install combined object libraries by using definitions:

OBJLIB += <name>
OBJLIB_vxWorks += <name>
OBJLIB_SRCS += <srcname1> <srcname2> ...
OBJLIB_OBJS += <objname1> <objname2> ...

These definitions result in the combined object file <name>Library.o and its corresponding <name>Library.munch
munch file being built for each vxWorks architecture from source/object files in the OBJLIB_SRCS/OBJLIB_OBJS
definitions. The combined object file and the munch file are installed into the $(INSTALL_LOCATION)/bin/<arch>
directory.

96 Chapter 1. How this documentation is organized

EPICS Documentation

Object Files

It is possible to generate and install object files by using definitions:

OBJS += <name>
OBJS_<osclass> += <name>
OBJS_DEFAULT += <name>
OBJS_IOC += <name>
OBJS_IOC_<osclass> += <name>
OBJS_IOC_DEFAULT += <name>
OBJS_HOST += <name>
OBJS_HOST_<osclass> += <name>
OBJS_HOST_DEFAULT += <name>

These will cause the specified file to be generated from an existing source file for the appropriate target arch and installed
into $(INSTALL_LOCATION)/bin/<arch>.

The following Makefile will create the abc object file for all target architectures, the def object file for all target archs
except vxWorks, and the xyz object file only for the vxWorks target architecture and install them into the appropriate
$(INSTALL_LOCATION)/bin/<arch> directory.

TOP=../../..
include $(TOP)/configure/CONFIG
OBJS += abc
OBJS_vxWorks += xyz
OBJS_DEFAULT += def
include $(TOP)/configure/RULES

State Notation Programs

A state notation program file can be specified as a source file in any SRC definition. For example:

<prodname>_SRCS += <name>.stt

The state notation compiler snc will generate the file <name>.c from the state notation program file <name>.stt. This
C file is compiled and the resulting object file is linked into the <prodname> product.

A state notation source file must have the extension .st or .stt. The .st file is passed through the C preprocessor before
it is processed by snc.

If you have state notation language source files (.stt and .st files), the module seq must be built and SNCSEQ defined in
the RELEASE file. If the state notation language source files require c preprocessing before conversion to c source (.st
files), gcc must be in your path.

1.13. Application Developer’s Guide 97

EPICS Documentation

Scripts, etc.

Any of the following can be specified:

SCRIPTS += <name>

A script will be installed from the src directory to the $(INSTALL_LOCATION)/bin/<arch> directories.

SCRIPTS_<osclass> += <name>

Script <name> will be installed for all archs of the specified osclass.

SCRIPTS_DEFAULT += <name>

Script <name> will be installed for any arch that does not have a SCRIPTS_<osclass> definition

SCRIPTS_IOC += <name>

Script <name> will be installed for IOC type archs.

SCRIPTS_IOC_<osclass> += <name>

Script <name> will be installed for all IOC type archs of the specified osclass.

SCRIPTS_IOC_DEFAULT += <name>

Script <name> will be installed for any IOC type arch that does not have a SCRIPTS_IOC_<osclass> definition

SCRIPTS_HOST += <name>

Script <name> will be installed for HOST type archs.

SCRIPTS_HOST_<osclass> += <name>

Script <name> will be installed for all HOST type archs of the specified osclass.

SCRIPTS_HOST_DEFAULT += <name>

Script <name> will be installed for any HOST type arch that does not have a SCRIPTS_HOST_<osclass> definition

Definitions of the form:

SCRIPTS_<osclass> += <name1>
SCRIPTS_DEFAULT += <name2>

results in the script being installed from the src directory to the $(INSTALL_LOCATION)/bin/<arch> directories
for all target archs of the specified os class and the script installed into the $(INSTALL_LOCATION)/bin/<arch>
directories of all other target archs.

98 Chapter 1. How this documentation is organized

EPICS Documentation

Include files

A definition of the form:

INC += <name>.h

results in file <name>.h being installed or created and installed to the $(INSTALL_LOCATION)/include directory.

Definitions of the form:

INC_DEFAULT += <name>.h
INC_<osclass> += <name>.h

results in file <name>.h being installed or created and installed into the appropriate $(INSTALL_LOCATION)/
include/os/<osclass> directory.

Html and Doc files

A definition of the form:

HTMLS_DIR = <dirname>
HTMLS += <name>

results in file <name> being installed from the src directory to the $(INSTALL_LOCATION)/html/<dirname> direc-
tory.

A definition of the form:

DOCS += <name>

results in file <name> being installed from the src directory to the $(INSTALL_LOCATION)/doc directory.

Templates

Adding definitions of the form

TEMPLATES_DIR = <dirname>
TEMPLATES += <name>

results in the file <name> being installed from the src directory to the $(INSTALL_LOCATION)/templates/
<dirname> directory. If a directory structure of template files is to be installed, the template file names may include a
directory prefix.

Lex and yacc

If a <name>.c source file specified in a Makefile definition is not found in the source directory, gnumake will try to
build it from <name>.y and <name>_lex.l files in the source directory. Lex converts a <name>.l Lex code file to a
lex.yy.c file which the build rules renames to <name>.c. Yacc converts a <name>.y yacc code file to a y.tab.c file,
which the build rules renames to <name>.c. Optionally yacc can create a y.tab.h file which the build rules renames
to <name>.h.

1.13. Application Developer’s Guide 99

EPICS Documentation

Products

A product executable is created for each and installed into $(INSTALL_LOCATION)/bin/<arch> by specifying its
name and the name of either the object or source files containing code for the product. An object or source file name
can appear with or without a directory prefix. Object files should contain a directory prefix. If the file has a directory
prefix e.g. $(EPICS_BASE_BIN), the file is taken from the specified location. If a directory prefix is not present, make
will look in the source directories for a file with the specified name or try build it using existing rules. An executable
filename suffix appropriate for the target arch (e.g. .exe) may be appended to the filename when the file is created.

PROD specifications in the Makefile for vxWorks target architectures create a combined object file with library refer-
ences resolved and a corresponding .munch file.

PROD_HOST += <name>
<name>_SRC += <srcname>.c

results in the executable <name> being built for each HOST architecture, <arch>, from a <srcname>.c file. Then
<name> is installed into the $(INSTALL_LOCATION)/bin/<arch> directory.

Specifying the product name.

Any of the following can be specified:

PROD += <name>

Product <name> will be created for every target arch.

PROD_<osclass> += <name>

Product <name> will be created for all archs of the specified osclass.

PROD_DEFAULT += <name>

Product <name> will be created for any arch that does not have a PROD_<osclass> definition

PROD_IOC += <name>

Product <name> will be created for IOC type archs.

PROD_IOC_<osclass> += <name>

Product <name> will be created for all IOC type archs of the specified osclass.

PROD_IOC_DEFAULT += <name>

Product <name> will be created for any IOC type arch that does not have a PROD_IOC_<osclass> definition

PROD_HOST += <name>

Product <name> will be created for HOST type archs.

PROD_HOST_<osclass> += <name>

Product <name> will be created for all HOST type archs of the specified osclass.

100 Chapter 1. How this documentation is organized

EPICS Documentation

PROD_HOST_DEFAULT += <name>

Product <name> will be created for any HOST type arch that does not have a PROD_HOST_<osclass> definition

Specifying product object file names

Object files which have filenames with a “.o” or “.obj” suffix are defined as follows and can be specified without the
suffix but should have the directory prefix

USR_OBJS += <name>

Object files will be used in builds of all products and libraries

USR_OBJS_<osclass> += <name>

Object files will be used in builds of all products and libraries for archs with the specified osclass.

USR_OBJS_DEFAULT += <name>

Object files will be used in builds of all products and libraries for archs without a USR_OBJS_<osclass> definition
specified.

PROD_OBJS += <name>

Object files will be used in builds of all products

PROD_OBJS_<osclass> += <name>

Object files will be used in builds of all products for archs with the specified osclass.

PROD_OBJS_DEFAULT += <name>

Object files will be used in builds of all products for archs without a PROD_OBJS_<osclass> definition specified.

<prodname>_OBJS += <name>

Object files will be used for all builds of the named product

<prodname>_OBJS_<osclass> += <name>

Object files will be used in builds of the named product for archs with the specified osclass.

<prodname>_OBJS_DEFAULT += <name>

Object files will be used in builds of the named product for archs without a <prodname>_OBJS_<osclass> definition
specified.

Combined object files, from R3.13 built modules and applications which have file names that do not include a “.o” or
“.obj” suffix (e.g. xyzLib) are defined as follows:

USR_OBJLIBS += <name>

Combined object files will be used in builds of all libraries and products.

1.13. Application Developer’s Guide 101

EPICS Documentation

USR_OBJLIBS_<osclass> += <name>

Combined object files will be used in builds of all libraries and products for archs of the specified osclass.

USR_OBJLIBS_DEFAULT += <name>

Combined object files will be used in builds of all libraries and products for archs without a USR_OBJLIBS_<osclass>
definition specified.

PROD_OBJLIBS += <name>

Combined object files will be used in builds of all products.

PROD_OBJLIBS_<osclass> += <name>

Combined object files will be used in builds of all products for archs of the specified osclass.

PROD_OBJLIBS_DEFAULT += <name>

Combined object files will be used in builds of all products for archs without a PROD_OBJLIBS_<osclass> definition
specified.

<prodname>_OBJLIBS += <name>

Combined object files will be used for all builds of the named product.

<prodname>_OBJLIBS_<osclass> += <name>

Combined object files will be used in builds of the named product for archs with the specified osclass.

<prodname>_OBJLIBS_DEFAULT += <name>

Combined object files will be used in builds of the named product for archs without a
<prodname>_OBJLIBS_<osclass> definition specified.

<prodname>_LDOBJS += <name>

Object files will be used for all builds of the named product. (deprecated)

<prodname>_LDOBJS_<osclass> += <name>

Object files will be used in builds of the name product for archs with the specified osclass. (deprecated)

<prodname>_LDOBJS_DEFAULT += <name>

Object files will be used in builds of the product for archs without a <prodname>_LDOBJS_<osclass> definition
specified. (deprecated)

102 Chapter 1. How this documentation is organized

EPICS Documentation

Specifying product source file names

Source file names, which must have a suffix, are defined as follows:

SRCS += <name>

Source files will be used for all defined libraries and products.

SRCS_<osclass> += <name>

Source files will be used for all defined libraries and products for all archs of the specified osclass.

SRCS_DEFAULT += <name>

Source files will be used for all defined libraries and products for any arch that does not have a SRCS_<osclass>
definition

USR_SRCS += <name>

Source files will be used for all products and libraries.

USR_SRCS_<osclass> += <name>

Source files will be used for all defined products and libraries for all archs of the specified osclass.

USR_SRCS_DEFAULT += <name>

Source files will be used for all defined products and libraries for any arch that does not have a USR_SRCS_<osclass>
definition

PROD_SRCS += <name>

Source files will be used for all products.

PROD_SRCS_<osclass> += <name>

Source files will be used for all defined products for all archs of the specified osclass.

PROD_SRCS_DEFAULT += <name>

Source files will be used for all defined products for any arch that does not have a PROD_SRCS_<osclass> definition

<prodname>_SRCS += <name>

Source file will be used for the named product.

<prodname>_SRCS_<osclass> += <name>

Source files will be used for named product for all archs of the specified osclass.

<prodname>_SRCS_DEFAULT += <name>

Source files will be used for named product for any arch that does not have a <prodname>_SRCS_<osclass> definition

1.13. Application Developer’s Guide 103

EPICS Documentation

Specifying libraries to be linked when creating the product

For each library name specified which is not a system library nor a library from EPICS base, a <name>_DIR definition
must be present in the Makefile to specify the location of the library.

Library names, which must not have a directory and “lib” prefix nor a suffix, are defined as follows:

PROD_LIBS += <name>

Libraries to be used when linking all defined products.

PROD_LIBS_<osclass> += <name>

Libraries to be used or all archs of the specified osclass when linking all defined products.

PROD_LIBS_DEFAULT += <name>

Libraries to be used for any arch that does not have a PROD_LIBS_<osclass> definition when linking all defined
products.

USR_LIBS += <name>

Libraries to be used when linking all defined products.

USR_LIBS_<osclass> += <name>

Libraries to be used or all archs of the specified osclasswhen linking all defined products.

USR_LIBS_DEFAULT += <name>

Libraries to be used for any arch that does not have a USR_LIBS_<osclass> definition when linking all defined prod-
ucts.

<prodname>_LIBS += <name>

Libraries to be used for linking the named product.

<prodname>_LIBS_<osclass> += <name>

Libraries will be used for all archs of the specified osclass for linking named product.

<prodname>_LIBS_DEFAULT += <name>

Libraries to be used for any arch that does not have a <prodname>_LIBS_<osclass> definition when linking named
product.

SYS_PROD_LIBS += <name>

System libraries to be used when linking all defined products.

SYS_PROD_LIBS_<osclass> += <name>

System libraries to be used for all archs of the specified osclass when linking all defined products.

SYS_PROD_LIBS_DEFAULT += <name>

104 Chapter 1. How this documentation is organized

EPICS Documentation

System libraries to be used for any arch that does not have a PROD_LIBS_<osclass> definition when linking all defined
products.

<prodname>_SYS_LIBS += <name>

System libraries to be used for linking the named product.

<prodname>_SYS_LIBS_<osclass> += <name>

System libraries will be used for all archs of the specified osclass for linking named product.

<prodname>_SYS_LIBS_DEFAULT += <name>

System libraries to be used for any arch that does not have a <prodname>_LIBS_<osclass> definition when linking
named product.

The order of dependant libraries

Dependant library names appear in the following order on a product link line:

1. <prodname>_LIBS

2. <prodname>_LIBS_<osclass> or <prodname>_LIBS_DEFAULT

3. PROD_LIBS

4. PROD_LIBS_<osclass> or PROD_LIBS_DEFAULT

5. USR_LIBS

6. USR_LIBS_<osclass> or USR_LIBS_DEFAULT

7. <prodname>_SYS_LIBS

8. <prodname>_SYS_LIBS_<osclass> or <prodname>_SYS_LIBS_DEFAULT

9. PROD_SYS_LIBS

10. PROD_SYS_LIBS_<osclass> or PROD_SYS_LIBS_DEFAULT

11. USR_SYS_LIBS

12. USR_SYS_LIBS_<osclass> or USR_SYS_LIBS_DEFAULT

Specifying product version number

On WIN32 only a product version number can be specified as follows:

PROD_VERSION += <version>

This results in /version:$(PROD_VERSION) link option.

1.13. Application Developer’s Guide 105

EPICS Documentation

Generate version header

A header can be generated which defines a single string macro with an automatically generated identifier. The default
is the ISO 8601 formatted time of the build. A revision id is used if a supported version control system is present. This
will typically be used to make an automatically updated source version number visible at runtime (eg. with a stringin
record).

To enable this the variable GENVERSION must be set with the desired name of the generated header. By default this
variable is empty and no header will be generated. If specified, this variable must be set before configure/RULES is
included.

It is also necessary to add an explicit dependency for each source file which includes the generated header.

An Makefile which generates a version header named myversion.h included by devVersionString.c would have
the following.

TOP=../..
include $(TOP)/configure/CONFIG
... define PROD or LIBRARY names sometarget
sometarget_SRCS = devVersionString.c
GENVERSION = myversion.h
include $(TOP)/configure/RULES
for each source file
devVersionString$(DEP): $(GENVERSION)

The optional variables GENVERSIONMACRO and GENVERSIONDEFAULT give the name of the C macro which will be
defined in the generated header, and its default value if no version control system is being used. To avoid conflicts, the
macro name must be changed from its default MODULEVERSION if the version header is to be installed.

Product static builds

Product executables can be linked with either archive versions or shared versions of EPICS libraries. Shared ver-
sions of system libraries will always be used in product linking. The definition of STATIC_BUILD (YES/NO) in base/
configure/CONFIG_SITE determines which EPICS libraries to use. When STATIC_BUILD is NO, shared libraries
will be used. (SHARED_LIBRARIES must be set to YES.) The default definition for STATIC_BUILD in the EPICS
base CONFIG_SITE distribution file is NO. A STATIC_BUILD definition in a Makefile will override the definition in
CONFIG_SITE. Static builds may not be possible on all systems. For static builds, all nonsystem libraries must have an
archive version, and this may not be true form all libraries.

Test Products

Test products are product executables that are created but not installed into $(INSTALL_LOCATION)/bin/<arch>
directories. Test product libraries, source, and object files are specified in exactly the same way as regular products.

Any of the following can be specified:

TESTPROD += <name>

Test product <name> will be created for every target arch.

TESTPROD_<osclass> += <name>

Test product <name> will be created for all archs of the specified osclass.

106 Chapter 1. How this documentation is organized

EPICS Documentation

TESTPROD_DEFAULT += <name>

Test product <name> will be created for any arch that does not have a TESTPROD_<osclass> definition

TESTPROD_IOC += <name>

Test product <name> will be created for IOC type archs.

TESTPROD_IOC_<osclass> += <name>

Test product <name> will be created for all IOC type archs of the specified osclass.

TESTPROD_IOC_DEFAULT += <name>

Test product <name> will be created for any IOC type arch that does not have a TESTPROD_IOC_<osclass> definition

TESTPROD_HOST += <name>

Test product <name> will be created for HOST type archs.

TESTPROD_HOST_<osclass> += <name>

Test product <name> will be created for all HOST type archs of the specified osclass.

TESTPROD_HOST_DEFAULT += <name>

Test product <name> will be created for any HOST type arch that does not have a TESTPROD_HOST_<osclass> defi-
nition

Test Scripts

Test scripts are perl scripts whose names end in .t that get executed to satisfy the runtests make target. They are run
by the perl Test::Harness library, and should send output to stdout following the Test Anything Protocol. Any of the
following can be specified, although only TESTSCRIPTS_HOST is currently useful:

TESTSCRIPTS += <name>

Test script <name> will be created for every target arch.

TESTSCRIPTS_<osclass> += <name>

Test script <name> will be created for all archs of the specified osclass.

TESTSCRIPTS_DEFAULT += <name>

Test script <name> will be created for any arch that does not have a TESTSCRIPTS_<osclass> definition

TESTSCRIPTS_IOC += <name>

Test script <name> will be created for IOC type archs.

TESTSCRIPTS_IOC_<osclass> += <name>

Test script <name> will be created for all IOC type archs of the specified osclass.

1.13. Application Developer’s Guide 107

EPICS Documentation

TESTSCRIPTS_IOC_DEFAULT += <name>

Test script <name>will be created for any IOC type arch that does not have a TESTSCRIPTS_IOC_<osclass> definition

TESTSCRIPTS_HOST += <name>

Test script <name> will be created for HOST type archs.

TESTSCRIPTS_HOST_<osclass> += <name>

Test script <name> will be created for all HOST type archs of the specified osclass.

TESTSCRIPTS_HOST_DEFAULT += <name>

Test script <name> will be created for any HOST type arch that does not have a TESTSCRIPTS_HOST_<osclass>
definition.

If a name in one of the above variables matches a regular executable program name (normally generated as a test
product) with .t appended, a suitable perl script will be generated that will execute that program directly; this makes it
simple to run programs that use the epicsUnitTest routines in libCom. A test script written in Perl with a name ending
.plt will be copied into the O.<arch> directory with the ending changed to .t; such scripts will usually use the perl
Test::Simple or Test::More libraries.

Miscellaneous Targets

A definition of the form:

TARGETS += <name>

results in the file <name> being built in the O.<arch> directory from existing rules and files in the source directory.
These target files are not installed.

Installing Other Binaries

Definitions of the form:

BIN_INSTALLS += <name>
BIN_INSTALLS += <dir>/<name>
BIN_INSTALLS_DEFAULT += <name>
BIN_INSTALLS_<osclass> += <name>

will result in the named files being installed to the appropriate $(INSTALL_LOCATION)/bin/<arch> directory. The
file <name> can appear with or without a directory prefix. If the file has a directory prefix e.g. $(EPICS_BASE_BIN),
it is copied from the specified location. If a directory prefix is not present, make will look in the source directory for
the file.

108 Chapter 1. How this documentation is organized

EPICS Documentation

Installing Other Libraries

Definitions of the form:

LIB_INSTALLS += <name>
LIB_INSTALLS += <dir>/<name>
LIB_INSTALLS_DEFAULT += <name>
LIB_INSTALLS_<osclass> += <name>

result in files being installed to the appropriate $(INSTALL_LOCATION)/lib/<arch> directory. The file <name> can
appear with or without a directory prefix. If the file has a directory prefix e.g. $(EPICS_BASE_LIB), it is copied from
the specified location. If a directory prefix is not present, make will look in the source directory for the file.

Win32 resource files

Definitions of the following forms result in resource files (*.res files) being created from the specified *.rc resource
definition script files and linked into the prods and/or libraries.

RCS += <name>
RCS_<osclass> += <name>

Resource definition script files for all products and libraries.

PROD_RCS += <name>
PROD_RCS_<osclass> += <name>
PROD_RCS_DEFAULT += <name>

Resource definition script files for all products.

LIB_RCS += <name>
LIB_RCS_<osclass> += <name>
LIB_RCS_DEFAULT += <name>

Resource definition script files for all libraries.

<name>_RCS += <name>
<name>_RCS_<osclass> += <name>
<name>_RCS_DEFAULT += <name>

Resource definition script files for specified product or library.

TCL libraries

Definitions of the form:

TCLLIBNAME += <name>
TCLINDEX += <name>

result in the specified tcl files being installed to the $(INSTALL_LOCATION)/lib/<arch> directory.

1.13. Application Developer’s Guide 109

EPICS Documentation

Java class files

Java class files can be created by the javac tool into $(INSTALL_JAVA) or into the O.Common subdirectory, by spec-
ifying the name of the java class file in the Makefile. Command line options for the javac tool can be specified. The
configuration files set the java c option -sourcepath .:..:../...

Any of the following can be specified:

JAVA += <name>.java

The <name>.java file will be used to create the <name>.class file in the $(INSTALL_JAVA) directory.

TESTJAVA += <name>.java

The <name>.java files will be used to create the <name>.class file in the O.Common subdirectory.

USR_JAVACFLAGS += <name>

The javac option <name> will be used on the javac command lines.

Example 1

In this example, three class files are created in $(INSTALL_LOCATION)/javalib/mytest. The javac depreciation
flag is used to list the description of each use or override of a deprecated member or class.

JAVA = mytest/one.java
JAVA = mytest/two.java
JAVA = mytest/three.java
USR_JAVACFLAGS = -deprecation

Example 2

In this example, the test.class file is created in the O.Common subdirectory.

TESTJAVA = test.java

Java jar file

A single java jar file can be created using the java jar tool and installed into $(INSTALL_JAVA) (i.e.
$(INSTALL_LOCATION)/javalib) by specifying its name, and the names of its input files to be included in the created
jar file. The jar input file names must appear with a directory prefix.

Any of the following can be specified:

JAR += <name>

The <name> jar file will be created and installed into the $(INSTALL_JAVA) directory.

JAR_INPUT += <name>

Names of images, audio files and classes files to be included in the jar file.

110 Chapter 1. How this documentation is organized

EPICS Documentation

JAR_MANIFEST += <name>

The preexisting manifest file will be used for the created jar file.

JAR_PACKAGES += <name>

Names of java packages to be installed and added to the created jar file.

Example 3

In this example, all the class files created by the current Makefile’s JAVA += definitions, are placed into a file named
mytest1.jar. A manifest file will be automatically generated for the jar.

Note

$(INSTALL_CLASSES) is set to $(addprefix $(INSTALL_JAVA)/,$(CLASSES)) in the EPICS base configure files.

JAR = mytest1.jar
JAR_INPUT = $(INSTALL_CLASSES)

Example 4

In this example, three class files are created and placed into a new jar archive file named mytest2.jar. An existing
manifest file, mytest2.mf is put into the new jar file.

JAR = mytest2.jar
JAR_INPUT = $(INSTALL_JAVA)/mytest/one.class
JAR_INPUT = $(INSTALL_JAVA)/mytest/two.class
JAR_INPUT = $(INSTALL_JAVA)/mytest/three.class
JAR_MANIFEST = mytest2.mf

Java native method C header files

A C header files for use with java native methods will be created by the javah tool in the O.Common subdirectory
by specifying the name of the header file to be created. The name of the java class file used to generate the header
is derived from the name of the header file. Underscores _ are used as a header file name delimiter. Command line
options for the javah tool can be specified.

Any of the following can be specified:

JAVAINC += <name>.h

The <name>.h header file will be created in the O.Common subdirectory.

USR_JAVAHFLAGS += <name>

The javah option <name> will be used on the javah tool command line.

1.13. Application Developer’s Guide 111

EPICS Documentation

Example 5

In this example, the C header xx_yy_zz.h will be created in the $(COMMON_DIR) subdirectory from the class xx.
yy.zz (i.e. the java class file $(INSTALL_JAVA)/xx/yy/zz.class)). The option -old will tell javah to create old
JDK1.0 style header files.

JAVAINC = xx_yy_zz.h
USR_JAVAHFLAGS = -old

User Created CONFIG* and RULES* files

Module developers can now create new CONFIG and RULES* files ia a <top> application source directory. These new
CONFIG* or RULES* files will be installed into the directory $(INSTALL_LOCATION)/cfg by including lines like the
following Makefile line:

CFG += CONFIG_MY1 RULES_MY1

The build will install the new files CONFIG_MY1 and RULES_MY1 into the $(INSTALL_LOCATION)/cfg directory.

Files in a $(INSTALL_LOCATION)/cfg directory are now included during a build by so that the definitions and rules
in them are available for use by later src directory Makefiles in the same module or by other modules with a RELEASE
line pointing to the TOP of this module.

User Created File Types

Module developers can now define a new type of file, e.g. ABC, so that files of type ABC will be installed into a directory
defined by INSTALL_ABC. This is done by creating a new CONFIG_<name> file, e.g. CONFIG_ABC, with the following
lines:

FILE_TYPE += ABC
INSTALL_ABC = $(INSTALL_LOCATION)/abc

The INSTALL_ABC directory should be a subdirectory of $(INSTALL_LOCATION). The file type ABC should be target
architecture independent (alh files, medm files, edm files.

Optional rules necessary for files of type ABC should be put in a RULES_ABC file.

The module developer installs new CONFIG_ABC and RULES_ABC files for the new file type into the directory
$(INSTALL_LOCATION)/cfg by including the following Makefile line:

CFG += CONFIG_ABC RULES_ABC

Files of type ABC are installed into INSTALL_ABC directory by adding a line like the following to a Makefile.

ABC += <filename1> <filename2> <filename3>

Since the files in $(INSTALL_LOCATION)/cfg directory are now included by the base config files, the ABC += defini-
tion lines are available for use by later src directory Makefiles in the same module or by other modules with a RELEASE
line pointing to the TOP of this module.

112 Chapter 1. How this documentation is organized

EPICS Documentation

Assemblies

A single output file is generated from assembling specified snippet files. Snippet file names start with numbers and
are sorted when the snippets are concatenated: first by the number, then alphabetical by the remaining part of the
name. (This mechanism is conceptually similar to the Linux convention of collecting configuration file snippets in *.d
directories.)

Snippets with file names not starting with a number or ending in ‘~’ are ignored. The specified snippets are processed
in the order they appear on the command line. Multiple snippets with the same number are concatenated. “Commands”
(tags in the snippet name) can be used to control the treatment of snippets with the same number:

• D - Default. Snippet is treated as a default, which is replaced (overwritten) by any other snippet with the same
number.

• R - Replace. Snippet is replacing (overwriting) already processed snippets with the same number.

Specification of the target file is different for architecture dependent or independent files.

COMMON_ASSEMBLIES += st.cmd
ASSEMBLIES += mytool.rc

Snippet files are configured specifically (relative or absolute path) or as patterns (searched relative to all source direc-
tories).

mytool.rc_SNIPPETS += ../rc.d/10_head ../rc.d/20_init
st.cmd_PATTERN += st.cmd.d/*

Macros

The following macros can be used in snippets, and will be replaced by the current value when assembling is done.

• DATETIME Date and time of the build

• USERNAME Name of the user running the build

• HOST Name of the host on which the build is run

• OUTPUTFILE Name of the generated file

• SNIPPETFILE Name of the current snippet

Example 6

This mechanism can be used to create an IOC startup file from snippets in a global and an application specific directory,
allowing applications to add commands to different phases of the IOC startup by dropping appropriately numbered
snippets into the directory.

Given the following directories and snippets:

/global/st.cmd.d/
D10_init
20_environment
30_drivers
D40_settings
70_start-ioc

1.13. Application Developer’s Guide 113

EPICS Documentation

../st.cmd.d/
D10_init
40_settings
40_settings~ # backup file
30_another-driver
R70_start-my-ioc

And the following Makefile declaration:

SCRIPTS += $(COMMON_DIR)/st.cmd
COMMON_ASSEMBLIES += st.cmd
st.cmd_SNIPPETS += $(wildcard /global/st.cmd.d/*)
st.cmd_PATTERN += st.cmd.d/*

The build will create and install a st.cmd script using the following snippets:

+---------+----------------------------+----------------------------+
| Source | Snippet | Comment |
+=========+============================+============================+
| L G | 10_init 20_environment | L default resets the G |
| | | default |
+---------+----------------------------+----------------------------+
| L G | 30_another-driver | implicit addition, |
| | 30_drivers | alphabetical sorting |
+---------+----------------------------+----------------------------+
| L | 40_settings | replacing a default, |
| | | ignoring backup file |
+---------+----------------------------+----------------------------+
| ##### | 70_start-my-ioc | explicit replace |
| L {#l} | | |
+---------+----------------------------+----------------------------+

Table of Makefile definitions

Definitions given below containing <osclass> are used when building for target archs of a specific osclass, and the
<osclass> part of the name should be replaced by the desired osclass, e.g. solaris, vxWorks, etc. If a _DEFAULT
setting is given but a particular <osclass> requires that the default not apply and there are no items in the definition
that apply for that <osclass>, the value -nil- should be specified in the relevant Makefile definition.

+----------------------------------+----------------------------------+
| Build Option | Description |
+==================================+==================================+
| Products to be built (host type | |
| archs only) | |
+----------------------------------+----------------------------------+
PROD	products (names without
	execution suffix) to build and
	install. Specify xyz to build
	executable xyz on Unix and
	xyz.exe on WIN32
+----------------------------------+----------------------------------+	
PROD_<osclass>	os class specific products to

(continues on next page)

114 Chapter 1. How this documentation is organized

EPICS Documentation

(continued from previous page)

| | build and install for |
| | <osclass> archs only |
+----------------------------------+----------------------------------+
PROD_DEFAULT	products to build and install
	for archs with no
	PROD_<osclass> specified
+----------------------------------+----------------------------------+	
PROD_IOC	products to build and install
	for ioc type archs
+----------------------------------+----------------------------------+	
PROD_IOC_<osclass>	os specific products to build
	and install for ioc type archs
+----------------------------------+----------------------------------+	
PROD_IOC_DEFAULT	products to build and install
	for ioc type arch systems with
	no PROD_IOC_<osclass>
	specified
+----------------------------------+----------------------------------+	
PROD_HOST	products to build and install
	for host type archs.
+----------------------------------+----------------------------------+	
PROD_HOST_<osclass>	os class specific products to
	build and install for
	<osclass> type archs
+----------------------------------+----------------------------------+	
PROD_HOST_DEFAULT Test products	products to build and install
to be built	for arch with no
	PROD_HOST_<osclass>
	specified
+==================================+==================================+	
TESTPROD	test products (names without
	execution suffix) to build but
	not install
+----------------------------------+----------------------------------+	
TESTPROD_<osclass>	os class specific test products
	to build but not install
+----------------------------------+----------------------------------+	
TESTPROD_DEFAULT	test products to build but not
	install for archs with no
	TESTPROD_<osclass>
	specified
+----------------------------------+----------------------------------+	
TESTPROD_IOC	test products to build and
	install for ioc type archs
+----------------------------------+----------------------------------+	
TESTPROD_IOC_<osclass>	os specific test products to
	build and install for ioc type
	archs
+----------------------------------+----------------------------------+	
TESTPROD_IOC_DEFAULT	test products to build and
	install for ioc type arch
	systems with no

(continues on next page)

1.13. Application Developer’s Guide 115

EPICS Documentation

(continued from previous page)

| | TESTPROD_IOC_<osclass> |
| | specified |
+----------------------------------+----------------------------------+
| TESTPROD_HOST | testproducts to build and |
| | install for host type archs. |
+----------------------------------+----------------------------------+
TESTPROD_HOST_<osclass>	os class specific testproducts
	to build and install for
	<osclass> type archs
+----------------------------------+----------------------------------+	
TESTPROD_HOST_DEFAULT Test	test products to build and
scripts to be built	install for arch with no
	TESTPROD_HOST_<osclass>
	specified
+==================================+==================================+	
TESTSCRIPTS	test scripts (names with .t
	suffix) to build but not install
+----------------------------------+----------------------------------+	
TESTSCRIPTS_<osclass>	os class specific test scripts
	to build but not install
+----------------------------------+----------------------------------+	
TESTSCRIPTS_DEFAULT	test scripts to build but not
	install for archs with no
	TESTSCRIPTS_<osclass>
	specified
+----------------------------------+----------------------------------+	
TESTSCRIPTS_IOC	test scripts to build and
	install for ioc type archs
+----------------------------------+----------------------------------+	
TESTSCRIPTS_IOC_<osclass>	os specific test scripts to
	build and install for ioc type
	archs
+----------------------------------+----------------------------------+	
TESTSCRIPTS_IOC_DEFAULT	test scripts to build and
	install for ioc type arch
	systems with no
	TESTSCRIPTS_IOC_<osclass>
	specified
+----------------------------------+----------------------------------+	
TESTSCRIPTS_HOST	test scripts to build and
	install for host type archs.
+----------------------------------+----------------------------------+	
TESTSCRIPTS_HOST_<osclass>	os class specific testscripts to
	build and install for
	<osclass> type archs
+----------------------------------+----------------------------------+	
TESTSCRIPTS_HOST_DEFAULT	test scripts to build and
Libraries to be built	install for arch with no
	TESTSCRIPTS_HOST_<osclass>
	specified
+==================================+==================================+	
LIBRARY	name of library to build and

(continues on next page)

116 Chapter 1. How this documentation is organized

EPICS Documentation

(continued from previous page)

	install. The name should NOT
	include a prefix or extension
	e.g. specify Ca to build libCa.a
	on Unix, Ca.lib or Ca.dll on
	WIN32
+----------------------------------+----------------------------------+	
LIBRARY_<osclass>	os specific libraries to build
	and install
+----------------------------------+----------------------------------+	
LIBRARY_DEFAULT	libraries to build and install
	for archs with no
	LIBRARY_<osclass> specified
+----------------------------------+----------------------------------+	
LIBRARY_IOC	name of library to build and
	install for ioc type archs. The
	name should NOT include a prefix
	or extension e.g. specify Ca to
	build libCa.a on Unix, Ca.lib or
	Ca.dll on WIN32
+----------------------------------+----------------------------------+	
LIBRARY_IOC_<osclass>	os specific libraries to build
	and install for ioc type archs
+----------------------------------+----------------------------------+	
LIBRARY_IOC_DEFAULT	libraries to build and install
	for ioc type arch systems with
	no LIBRARY_IOC_<osclass>
	specified
+----------------------------------+----------------------------------+	
LIBRARY_HOST	name of library to build and
	install for host type archs. The
	name should NOT include a prefix
	or extension, e.g. specify Ca to
	build libCa.a on Unix, Ca.lib or
	Ca.dll on WIN32
+----------------------------------+----------------------------------+	
LIBRARY_HOST_<osclass>	os class specific libraries to
	build and install for host type
	archs
+----------------------------------+----------------------------------+	
LIBRARY_HOST_DEFAULT	libraries to build and install
	for host type arch systems with
	no LIBRARY_HOST_<osclass>
	specified
+----------------------------------+----------------------------------+	
SHARED_LIBRARIES	build shared libraries? Must be
	YES or NO
+----------------------------------+----------------------------------+	
SHRLIB_VERSION Loadable	shared library version number
libraries to be built	
+==================================+==================================+	
LOADABLE_LIBRARY	name of loadable library to
	build and install. The name

(continues on next page)

1.13. Application Developer’s Guide 117

EPICS Documentation

(continued from previous page)

	should NOT include a prefix or
	extension e.g. specify Ca to
	build libCa.so on Unix and
	Ca.dll on WIN32
+----------------------------------+----------------------------------+	
LOADABLE_LIBRARY_<osclass>	os specific loadable libraries
	to build and install
+----------------------------------+----------------------------------+	
LOADABLE_LIBRARY_DEFAULT	loadable libraries to build and
	install for archs with no
	LOADABLE_LIBRARY_<osclass>
	specified
+----------------------------------+----------------------------------+	
LOADABLE_LIBRARY_HOST	name of loadable library to
	build and install for host type
	archs. The name should NOT
	include a prefix or extension,
	e.g. specify test to build
	libtest.so on Unix and test.dll
	on WIN32
+----------------------------------+----------------------------------+	
LOADABLE_LIBRARY_HOST_<osclass>	os class specific loadable
	libraries to build and install
	for host type archs
+----------------------------------+----------------------------------+	
LOADABLE_LIBRARY_HOST_DEFAULT	loadable libraries to build and
Combined object files (vxWorks	install for host type arch
only)	systems with no
	LOADABLE_LIBRARY_HOST_<osclass>
	specified
+==================================+==================================+	
OBJLIB	name of a combined object file
	library and corresponding munch
	file to build and install. The
	name will have a Library suffix
	appended
+----------------------------------+----------------------------------+	
OBJLIB_vxWorks	same as OBJLIB
+----------------------------------+----------------------------------+	
OBJLIB_SRCS	source files to build the OBJLIB
+----------------------------------+----------------------------------+	
OBJLIB_OBJS Product and library	object files to include in
source files	OBJLIB
+==================================+==================================+	
SRCS	source files to build all PRODs
	and LIBRARYs
+----------------------------------+----------------------------------+	
SRCS_<osclass>	osclass specific source files to
	build all PRODs and LIBRARYs
+----------------------------------+----------------------------------+	
SRCS_DEFAULT	source file to build all PRODs
	and LIBRARYs for archs with no

(continues on next page)

118 Chapter 1. How this documentation is organized

EPICS Documentation

(continued from previous page)

| | SRCS_<osclass> specified |
+----------------------------------+----------------------------------+
| USR_SRCS | source files to build all PRODs |
| | and LIBRARYs |
+----------------------------------+----------------------------------+
| USR_SRCS_<osclass> | osclass specific source files to |
| | build all PRODs and LIBRARYs |
+----------------------------------+----------------------------------+
USR_SRCS_DEFAULT	source file to build all PRODs
	and LIBRARYs for archs with no
	SRCS_<osclass> specified
+----------------------------------+----------------------------------+	
PROD_SRCS	source files to build all PRODs
+----------------------------------+----------------------------------+	
PROD_SRCS_<osclass>	osclass specific source files to
	build all PRODs
+----------------------------------+----------------------------------+	
PROD_SRCS_DEFAULT	source files needed to build
	PRODs for archs with no
	SRCS_<osclass> specified
+----------------------------------+----------------------------------+	
LIB_SRCS	source files for building
	LIBRARY (e.g. LIB_SRCS=la.c lb.c
	lc.c)
+----------------------------------+----------------------------------+	
LIB_SRCS_<osclass>	os-specific library source files
+----------------------------------+----------------------------------+	
LIB_SRCS_DEFAULT	library source files for archs
	with no LIB_SRCS_<osclass>
	specified
+----------------------------------+----------------------------------+	
LIBSRCS	source files for building
	LIBRARY (deprecated)
+----------------------------------+----------------------------------+	
LIBSRCS_<osclass>	os-specific library source files
	(deprecated)
+----------------------------------+----------------------------------+	
LIBSRCS_DEFAULT	library source files for archs
	with no LIBSRCS_<osclass>
	specified (deprecated)
+----------------------------------+----------------------------------+	
<name>_SRCS	source files to build a specific
	PROD or LIBRARY
+----------------------------------+----------------------------------+	
<name>_SRCS_<osclass>	os specific source files to
	build a specific PROD or LIBRARY
+----------------------------------+----------------------------------+	
<name>_SRCS_DEFAULT Product	source files needed to build a
and library object files	specific PROD or LIBRARY for
	archs with no
	<prod>_SRCS_<osclass>
	specified

(continues on next page)

1.13. Application Developer’s Guide 119

EPICS Documentation

(continued from previous page)

+==================================+==================================+
USR_OBJS	object files, specified without
	suffix, to build all PRODs and
	LIBRARYs
+----------------------------------+----------------------------------+	
USR_OBJS_<osclass>	osclass specific object files,
	specified without suffix, to
	build all PRODs and LIBRARYs
+----------------------------------+----------------------------------+	
USR_OBJS_DEFAULT	object files, specified without
	suffix, needed to build PRODs
	and LIBRARYs for archs with no
	OBJS_<osclass> specified
+----------------------------------+----------------------------------+	
PROD_OBJS	object files, specified without
	suffix, to build all PRODs
+----------------------------------+----------------------------------+	
PROD_OBJS_<osclass>	osclass specific object files,
	specified without suffix, to
	build all PRODs
+----------------------------------+----------------------------------+	
PROD_OBJS_DEFAULT	object files, specified without
	suffix, needed to build PRODs
	for archs with no
	OBJS_<osclass> specified
+----------------------------------+----------------------------------+	
LIB_OBJS	object files, specified without
	suffix, for building all
	LIBRARYs (e.g.
	LIB_OBJS+=$(AB_BIN)/la
	$(AB_BIN)/lb)
+----------------------------------+----------------------------------+	
LIB_OBJS_<osclass>	os-specific library object
	files, specify without suffix,
+----------------------------------+----------------------------------+	
LIB_OBJS_DEFAULT	library object files, specified
	without suffix, for archs with
	no LIB_OBJS_<osclass>
	specified
+----------------------------------+----------------------------------+	
<name>_OBJS	object files, specified without
	suffix, to build a specific PROD
	or LIBRARY
+----------------------------------+----------------------------------+	
<name>_OBJS_<osclass>	os specific object files,
	specified without suffix, to
	build a specific PROD or
	LIBRARY
+----------------------------------+----------------------------------+	
<name>_OBJS_DEFAULT Product	object files, without suffix,
and library R3.13 combined	needed to build a specific PROD
object files	or LIBRARY for archs with no

(continues on next page)

120 Chapter 1. How this documentation is organized

EPICS Documentation

(continued from previous page)

| | <prod>_OBJS_<osclass> |
| | specified |
+==================================+==================================+
USR_OBJLIBS	combined object files with
	filenames that do not have a
	suffix, needed for building all
	PRODs and LIBRARYs (e.g.
	USR_OBJLIBS+=$(XYZ_BIN)/xyzLib)
+----------------------------------+----------------------------------+	
USR_OBJLIBS_<osclass>	os-specific combined object
	files with filenames that do not
	have a suffix for building all
	PRODs and LIBRARYs
+----------------------------------+----------------------------------+	
USR_OBJLIBS_DEFAULT	combined object files with
	filenames that do not have a
	suffix, for archs with no
	USR_OBJLIBS_<osclass>
	specified for building all PRODs
	and LIBRARYs
+----------------------------------+----------------------------------+	
PROD_OBJLIBS	combined object files with
	filenames that do not have a
	suffix, needed for building all
	PRODs (e.g.
	P
	ROD_OBJLIBS+=$(XYZ_BIN)/xyzLib)
+----------------------------------+----------------------------------+	
PROD_OBJLIBS_<osclass>	os-specific combined object
	files with filenames that do not
	have a suffix for building all
	PRODs
+----------------------------------+----------------------------------+	
PROD_OBJLIBS_DEFAULT	combined object files with
	filenames that do not have a
	suffix, for archs with no
	PROD_OBJLIBS_<osclass>
	specified for building all PRODs
+----------------------------------+----------------------------------+	
LIB_OBJLIBS	combined object files with
	filenames that do not have a
	suffix, needed for building all
	LIBRARYs (e.g.
	LIB_OBJLIBS+=$(XYZ_BIN)/xyzLib)
+----------------------------------+----------------------------------+	
LIB_OBJLIBS_<osclass>	os-specific combined object
	files with filenames that do not
	have a suffix for building all
	LIBRARYs
+----------------------------------+----------------------------------+	
LIB_OBJLIBS_DEFAULT	combined object files with
	filenames that do not have a

(continues on next page)

1.13. Application Developer’s Guide 121

EPICS Documentation

(continued from previous page)

	suffix, for archs with no
	LIB_OBJLIBS_<osclass>
	specified for building all
	LIBRARYs
+----------------------------------+----------------------------------+	
<name>_OBJLIBS	combined object files with
	filenames that do not have a
	suffix, needed to build a
	specific PROD or LIBRARY
+----------------------------------+----------------------------------+	
<name>_OBJLIBS_<osclass>	os specific combined object
	files with filenames that do not
	have a suffix, to build a
	specific PROD or LIBRARY
+----------------------------------+----------------------------------+	
<name>_OBJLIBS_DEFAULT	combined object files with
	filenames that do not have a
	suffix, needed to build a
	specific PROD or LIBRARY for
	archs with no
	<name>_OBJLIBS_<osclass>
	specified
+----------------------------------+----------------------------------+	
<name>_LDOBJS	combined object files with
	filenames that do not have a
	suffix, needed to build a
	specific PROD or LIBRARY
	(deprecated)
+----------------------------------+----------------------------------+	
<name>_LDOBJS_<osclass>	os specific combined object
	files with filenames that do not
	have a suffix, to build a
	specific PROD or LIBRARY
	(deprecated)
+----------------------------------+----------------------------------+	
<name>_LDOBJS_DEFAULT Product	combined object files with
and library dependant libraries	filenames that do not have a
	suffix, needed to build a
	specific PROD or LIBRARY for
	archs with no
	<name>_LDOBJS_<osclass>
	specified (deprecated)
+==================================+==================================+	
<name>_DIR	directory to search for the
	specified lib. (For libs listed
	in all PROD_LIBS, LIB_LIBS,
	<name>_LIBS and USR_LIBS
	listed below)System libraries do
	not need a <name>_dir
	definition.
+----------------------------------+----------------------------------+	
USR_LIBS	load libraries (e.g. Xt X11) for

(continues on next page)

122 Chapter 1. How this documentation is organized

EPICS Documentation

(continued from previous page)

| | all products and libraries |
+----------------------------------+----------------------------------+
| USR_LIBS_<osclass> | os specific load libraries for |
| | all makefile links |
+----------------------------------+----------------------------------+
USR_LIBS_DEFAULT	load libraries for systems with
	no USR_LIBS_<osclass>
	specified libs
+----------------------------------+----------------------------------+	
<name>_LIBS	named prod or library specific
	ld libraries (e.g.
	probe_LIBS=X11 Xt)
+----------------------------------+----------------------------------+	
<name>_LIBS_<osclass>	os-specific libs needed to link
	named prod or library
+----------------------------------+----------------------------------+	
<name>_LIBS_DEFAULT	libs needed to link named prod
	or library for systems with no
	<name>_LIBS_<osclass>
	specified
+----------------------------------+----------------------------------+	
PROD_LIBS	libs needed to link every PROD
+----------------------------------+----------------------------------+	
PROD_LIBS_<osclass>	os-specific libs needed to link
	every PROD
+----------------------------------+----------------------------------+	
PROD_LIBS_DEFAULT	libs needed to link every PROD
	for archs with no
	PROD_LIBS_<osclass>
	specified
+----------------------------------+----------------------------------+	
LIB_LIBS	libraries to be linked with
	every library being created
+----------------------------------+----------------------------------+	
LIB_LIBS_<osclass>	os class specific libraries to
	be linked with every library
	being created
+----------------------------------+----------------------------------+	
LIB_LIBS_DEFAULT	libraries to be linked with
	every library being created for
	archs with no
	LIB_LIBS_<osclass>
	specified
+----------------------------------+----------------------------------+	
USR_SYS_LIBS	system libraries (e.g. Xt X11)
	for all products and libraries
+----------------------------------+----------------------------------+	
USR_SYS_LIBS_<osclass>	os class specific system
	libraries for all makefile links
+----------------------------------+----------------------------------+	
USR_SYS_LIBS_DEFAULT	system libraries for archs with
	no USR_SYS_LIBS_<osclass>

(continues on next page)

1.13. Application Developer’s Guide 123

EPICS Documentation

(continued from previous page)

| | specified |
+----------------------------------+----------------------------------+
| <name>_SYS_LIBS | named prod or library specific |
| | system ld libraries |
+----------------------------------+----------------------------------+
	os class specific system libs
<name>_SYS_LIBS_<osclass>	needed to link named prod or
	library
+----------------------------------+----------------------------------+	
<name>_SYS_LIBS_DEFAULT	system libs needed to link named
	prod or library for systems with
	no
	<name>_SYS_LIBS_<osclass>
	specified
+----------------------------------+----------------------------------+	
PROD_SYS_LIBS	system libs needed to link every
	PROD
+----------------------------------+----------------------------------+	
PROD_SYS_LIBS_<osclass>	os class specific system libs
	needed to link every PROD
+----------------------------------+----------------------------------+	
PROD_SYS_LIBS_DEFAULT	system libs needed to link every
	PROD for archs with no
	PROD_SYS_LIBS_<osclass>
	specified
+----------------------------------+----------------------------------+	
LIB_SYS_LIBS	system libraries to be linked
	with every library being created
+----------------------------------+----------------------------------+	
LIB_SYS_LIBS_<osclass>	os class specific system
	libraries to be linked with
	every library being created
+----------------------------------+----------------------------------+	
LIB_SYS_LIBS_DEFAULT	system libraries to be linked
	with every library being created
	for archs with no
	LIB_SYS_LIBS_<osclass>
	specified
+----------------------------------+----------------------------------+	
SYS_PROD_LIBS	system libs needed to link every
	PROD for all systems
	(deprecated)
+----------------------------------+----------------------------------+	
SYS_PROD_LIBS_<osclass>	os class specific system libs
	needed to link every PROD
	(deprecated)
+----------------------------------+----------------------------------+	
SYS_PROD_LIBS_DEFAULT Compiler	system libs needed to link every
flags	PROD for systems with no
	SYS_PROD_LIBS_<osclass>
	specified (deprecated)

(continues on next page)

124 Chapter 1. How this documentation is organized

EPICS Documentation

(continued from previous page)

+==================================+==================================+
| USR_CFLAGS | C compiler flags for all systems |
+----------------------------------+----------------------------------+
| USR_CFLAGS_<T_A> | target architecture specific C |
| | compiler flags |
+----------------------------------+----------------------------------+
| USR_CFLAGS_<osclass> | os class specific C compiler |
| | flags |
+----------------------------------+----------------------------------+
USR_CFLAGS_DEFAULT	C compiler flags for archs with
	no USR_CFLAGS_<osclass>
	specified
+----------------------------------+----------------------------------+	
<name>_CFLAGS	file specific C compiler flags
	(e.g. xxxRecord_CFLAGS=-g)
+----------------------------------+----------------------------------+	
<name>_CFLAGS_<T_A>	file specific C compiler flags
	for a specific target
	architecture
+----------------------------------+----------------------------------+	
<name>_CFLAGS_<osclass>	file specific C compiler flags
	for a specific os class
+----------------------------------+----------------------------------+	
USR_CXXFLAGS	C++ compiler flags for all
	systems (e.g.
	xyxMain_CFLAGS=-DSDDS)
+----------------------------------+----------------------------------+	
USR_CXXFLAGS_<T_A>	target architecture specific C++
	compiler flags
+----------------------------------+----------------------------------+	
USR_CXXFLAGS_<osclass>	os-specific C++ compiler flags
+----------------------------------+----------------------------------+	
USR_CXXFLAGS_DEFAULT	C++ compiler flags for systems
	with no
	USR_CXXFLAGS_<osclass>
	specified
+----------------------------------+----------------------------------+	
<name>_CXXFLAGS	file specific C++ compiler flags
+----------------------------------+----------------------------------+	
<name>_CXXFLAGS_<T_A>	file specific C++ compiler flags
	for a specific target
	architecture
+----------------------------------+----------------------------------+	
\	file specific C++ compiler flags
<name>_CXXFLAGS_<osclass>	for a specific osclass
+----------------------------------+----------------------------------+	
USR_CPPFLAGS	C pre-processor flags (for all
	makefile compiles)
+----------------------------------+----------------------------------+	
USR_CPPFLAGS_<T_A>	target architecture specific cpp
	flags
+----------------------------------+----------------------------------+

(continues on next page)

1.13. Application Developer’s Guide 125

EPICS Documentation

(continued from previous page)

| USR_CPPFLAGS_<osclass> | os specific cpp flags |
+----------------------------------+----------------------------------+
USR_CPPFLAGS_DEFAULT	cpp flags for systems with no
	USR_CPPFLAGS_<osclass>
	specified
+----------------------------------+----------------------------------+	
<name>_CPPFLAGS	file specific C pre-processor
	flags(e.g.
	xxxRecord_CPPFLAGS=-DDEBUG)
+----------------------------------+----------------------------------+	
<name>_CPPFLAGS_<T_A>	file specific cpp flags for a
	specific target architecture
+----------------------------------+----------------------------------+	
\	file specific cpp flags for a
<name>_CPPFLAGS_<osclass>	specific os class
+----------------------------------+----------------------------------+	
USR_INCLUDES	directories, with -I prefix, to
	search for include files(e.g.
	-I$(EPICS_EXTENSIONS_INCLUDE))
+----------------------------------+----------------------------------+	
USR_INCLUDES_<osclass>	directories, with -I prefix, to
	search for include files for a
	specific os class
+----------------------------------+----------------------------------+	
USR_INCLUDES_DEFAULT	directories, with -I prefix, to
	search for include files for
	systems with no
	<name>_INCLUDES_<osclass>
	specified
+----------------------------------+----------------------------------+	
<name>_INCLUDES	directories, with -I prefix, to
	search for include files when
	building a specific object file
	(e.g. -I$(MOTIF_INC))
+----------------------------------+----------------------------------+	
<name>_INCLUDES_<T_A>	file specific directories, with
	-I prefix, to search for include
	files for a specific target
	architecture
+----------------------------------+----------------------------------+	
	file specific directories, with
<name>_INCLUDES_<osclass>	-I prefix, to search for include
	files for a specific os class
+----------------------------------+----------------------------------+	
HOST_WARN	Are compiler warning messages
	desired for host type builds?
	(YES or NO) (default is YES)
+----------------------------------+----------------------------------+	
CROSS_WARN	C cross-compiler warning
	messages desired (YES or NO)
	(default YES)

(continues on next page)

126 Chapter 1. How this documentation is organized

EPICS Documentation

(continued from previous page)

+----------------------------------+----------------------------------+
HOST_OPT	Is host build compiler
	optimization desired (default is
	NO optimization)
+----------------------------------+----------------------------------+	
CROSS_OPT	Is cross-compiler optimization
	desired (YES or NO) (default is
	NO optimization)
+----------------------------------+----------------------------------+	
CMPLR	C compiler selection, TRAD, ANSI
	or STRICT (default is STRICT)
+----------------------------------+----------------------------------+	
CXXCMPLR Linker options	C++ compiler selection, NORMAL
	or STRICT (default is STRICT)
+==================================+==================================+	
USR_LDFLAGS	linker options (for all makefile
	links)
+----------------------------------+----------------------------------+	
USR_LDFLAGS_<osclass>	os specific linker options (for
	all makefile links)
+----------------------------------+----------------------------------+	
USR_LDFLAGS_DEFAULT	linker options for systems with
	no USR_LDFLAGS_<osclass>
	specified
+----------------------------------+----------------------------------+	
PROD_LDFLAGS	prod linker options
+----------------------------------+----------------------------------+	
PROD_LDFLAGS_<osclass>	os specific prod linker options
+----------------------------------+----------------------------------+	
PROD_LDFLAGS_DEFAULT	prod linker options for systems
	with no
	PROD_LDFLAGS_<osclass>
	specified
+----------------------------------+----------------------------------+	
LIB_LDFLAGS	library linker options
+----------------------------------+----------------------------------+	
LIB_LDFLAGS_<osclass>	os specific library linker
	options
+----------------------------------+----------------------------------+	
LIB_LDFLAGS_DEFAULT	library linker options for
	systems with no
	LIB_LDFLAGS_<osclass>
	specified
+----------------------------------+----------------------------------+	
<name>_LDFLAGS	prod or library specific linker
	options
+----------------------------------+----------------------------------+	
<name>_LDFLAGS_<osclass>	prod or library specific linker
	flags for a specific os class
+----------------------------------+----------------------------------+	
<name>_LDFLAGS_DEFAULT	linker options for systems with
	no

(continues on next page)

1.13. Application Developer’s Guide 127

EPICS Documentation

(continued from previous page)

| | <name>_LDFLAGS_<osclass> |
| | specified |
+----------------------------------+----------------------------------+
STATIC_BUILD Header files to be	Is static build desired (YES or
installed	NO) (default is NO). On win32 if
	STATIC_BUILD=YES then set
	SHARED_LIBRARIES=NO)
+==================================+==================================+	
INC	list of include files to install
	into $(INSTALL_DIR)/include
+----------------------------------+----------------------------------+	
INC_<osclass>	os specific includes to
	installed under
	$(INSTALL_DIR)/include/os/<osclass>
+----------------------------------+----------------------------------+	
INC_DEFAULT Perl, csh, tcl etc.	include files to install where
script installation	no INC_<osclass> is
	specified
+==================================+==================================+	
SCRIPTS	scripts to install for all
	systems
+----------------------------------+----------------------------------+	
SCRIPTS_<osclass>	os-specific scripts to install
+----------------------------------+----------------------------------+	
SCRIPTS_DEFAULT	scripts to install for systems
	with no SCRIPTS_<osclass>
	specified
+----------------------------------+----------------------------------+	
SCRIPTS_IOC	scripts to install for ioc type
	archs.
+----------------------------------+----------------------------------+	
SCRIPTS_IOC_<osclass>	os specific scripts to install
	for ioc type archs
+----------------------------------+----------------------------------+	
SCRIPTS_IOC_DEFAULT	scripts to install for ioc type
	arch systems with no
	SCRIPTS_IOC_<osclass>
	specified
+----------------------------------+----------------------------------+	
SCRIPTS_HOST	scripts to install for host type
	archs.
+----------------------------------+----------------------------------+	
SCRIPTS_HOST_<osclass>	os class specific scripts to
	install for host type archs
+----------------------------------+----------------------------------+	
SCRIPTS_HOST_DEFAULT	scripts to install for host type
	arch systems with no
	OBJS_HOST_<osclass>
	specified
+----------------------------------+----------------------------------+	
TCLLIBNAME	list of tcl scripts to install
	into

(continues on next page)

128 Chapter 1. How this documentation is organized

EPICS Documentation

(continued from previous page)

| | $(INSTALL_DIR)/lib/<osclass> |
| | (Unix hosts only) |
+----------------------------------+----------------------------------+
| TCLINDEX | name of tcl index file to create |
| | from TCLLIBNAME scripts |
+----------------------------------+----------------------------------+
Object files	The names in the following
	OBJS definitions should NOT
	include a suffix (.o or.obj).
+==================================+==================================+	
OBJS	object files to build and
	install for all system.
+----------------------------------+----------------------------------+	
OBJS_<osclass>	os-specific object files to
	build and install.
+----------------------------------+----------------------------------+	
OBJS_DEFAULT	object files to build and
	install for systems with no
	OBJS_<osclass> specified.
+----------------------------------+----------------------------------+	
OBJS_IOC	object files to build and
	install for ioc type archs.
+----------------------------------+----------------------------------+	
OBJS_IOC_<osclass>	os specific object files to
	build and install for ioc type
	archs
+----------------------------------+----------------------------------+	
OBJS_IOC_DEFAULT	object files to build and
	install for ioc type arch
	systems with no
	OBJS_IOC_<osclass>
	specified
+----------------------------------+----------------------------------+	
OBJS_HOST	object files to build and
	install for host type archs.
+----------------------------------+----------------------------------+	
OBJS_HOST_<osclass>	os class specific object files
	to build and install for host
	type archs
+----------------------------------+----------------------------------+	
OBJS_HOST_DEFAULT Documentation	object files to build and
	install for host type arch
	systems with no
	OBJS_HOST_<osclass>
	specified
+==================================+==================================+	
DOCS	text files to be installed into
	the $(INSTALL_DIR)/doc
	directory
+----------------------------------+----------------------------------+	
HTMLS_DIR	name install Hypertext directory
	name i.e.

(continues on next page)

1.13. Application Developer’s Guide 129

EPICS Documentation

(continued from previous page)

| | $(INSTALL_DIR)/html/$(HTMLS_DIR) |
+----------------------------------+----------------------------------+
HTMLS	hypertext files to be installed
	into the
	$(INSTALL_DIR)/html/$(HTMLS_DIR)
	directory
+----------------------------------+----------------------------------+	
TEMPLATES_DIR	template directory to be created
	as
	$(INSTALL_DIR)/templates/$(TEMPLATE_DIR)
+----------------------------------+----------------------------------+	
TEMPLATES Database Definition	template files to be installed
files	into $(TEMPLATE_DIR)
+==================================+==================================+	
DBD	database definition files to be
	installed or created and
	installed into $(INSTALL_DBD).
+----------------------------------+----------------------------------+	
DBDINC	names, without suffix, of menus
	or record database definitions
	and headers to be installed or
	created and installed.
+----------------------------------+----------------------------------+	
USR_DBDFLAGS	optional flags for dbExpand.
	Currently only include path (-I
	<path>) and macro substitution
	(-S <substitution>) are
	supported.
+----------------------------------+----------------------------------+	
DBD_INSTALLS Database Files	files from specified directory
	to install into $(INSTALL_DBD)
	(e.g. DBD_INSTALLS =
	$(APPNAME)/dbd/test.dbd)
+==================================+==================================+	
DB	database files to be installed
	or created and installed into
	$(INSTALL_DB).
+----------------------------------+----------------------------------+	
DB_INSTALLS	files from specified directory
	to install into $(INSTALL_DB)
	(e.g. DB_INSTALLS =
	$(APPNAME)/db/test.db)
+----------------------------------+----------------------------------+	
USR_DBFLAGS Options for other	optional flags for msi (EPICS
programs	Macro Substitution Tool)
+==================================+==================================+	
YACCOPT	yacc options
+----------------------------------+----------------------------------+	
LEXOPT	lex options
+----------------------------------+----------------------------------+	
SNCFLAGS	state notation language, snc,
	options

(continues on next page)

130 Chapter 1. How this documentation is organized

EPICS Documentation

(continued from previous page)

+----------------------------------+----------------------------------+
| <name>_SNCFLAGS | product specific state notation |
| | language options |
+----------------------------------+----------------------------------+
| E2DB_FLAGS | e2db options |
+----------------------------------+----------------------------------+
| SCH2EDIF_FLAGS | sch2edif options |
+----------------------------------+----------------------------------+
| RANLIBFLAGS | ranlib options |
+----------------------------------+----------------------------------+
| USR_ARFLAGS Facilities for | ar options |
| building Java programs | |
+==================================+==================================+
| JAVA | names of Java source files to be |
| | built and installed |
+----------------------------------+----------------------------------+
| TESTJAVA | names of Java source files to be |
| | built |
+----------------------------------+----------------------------------+
| JAVAINC | names of C header file to be |
| | created in O.Common subdirectory |
+----------------------------------+----------------------------------+
| JAR | name of Jar file to be built |
+----------------------------------+----------------------------------+
| JAR_INPUT | names of files to be included in |
| | JAR |
+----------------------------------+----------------------------------+
| JAR_MANIFEST | name of manifest file for JAR |
+----------------------------------+----------------------------------+
| USR_JAVACFLAGS | javac tool options |
+----------------------------------+----------------------------------+
USR_JAVAHFLAGS Facilities for	javah tool options
Windows 95/NT resource (.rc)	
files	
+==================================+==================================+	
RCS	resource files (<name>.rc)
	needed to build every PROD and
	LIBRARY
+----------------------------------+----------------------------------+	
RCS_<osclass>	resource files (<name>.rc)
	needed to build every PROD and
	LIBRARY for ioc type archs
+----------------------------------+----------------------------------+	
RCS_DEFAULT	resource files needed to build
	every PROD and LIBRARY for ioc
	type arch systems with no
	RCS_<osclass> specified
+----------------------------------+----------------------------------+	
<name>_RCS	resource files needed to build a
	specific PROD or LIBRARY
+----------------------------------+----------------------------------+	
<name>_RCS_<osclass>	os specific resource files to

(continues on next page)

1.13. Application Developer’s Guide 131

EPICS Documentation

(continued from previous page)

| | build a specific PROD or LIBRARY |
+----------------------------------+----------------------------------+
<name>_RCS_DEFAULT Assemblies	resource files needed to build a
	specific PROD or LIBRARY for ioc
	type arch systems with no
	RCS_<osclass> specified
+==================================+==================================+	
ASSEMBLIES	names of files to be assembled
	from snippets
+----------------------------------+----------------------------------+	
COMMON_ASSEMBLIES	names of arch-independent files
	to be assembled from snippets
+----------------------------------+----------------------------------+	
<name>_SNIPPETS	snippet files needed to build a
	specific assembly
+----------------------------------+----------------------------------+	
<name>_PATTERN Other	patterns for snippet files
definitions:	(searched from all source
	directories) needed to build a
	specific assembly
+==================================+==================================+	
USR_VPATH	list of directories
+----------------------------------+----------------------------------+	
BIN_INSTALLS	files from specified directories
	to be installed into
	$(INSTALL_BIN) (e.g.
	BIN_INSTALLS =
	$(EPICS_BASE_BIN)/aiRecord$(OBJ))
+----------------------------------+----------------------------------+	
BIN_INSTALLS_<osclass>	os class specific files from
	specified directories to be
	installed into $(INSTALL_BIN)
+----------------------------------+----------------------------------+	
BIN_INSTALLS_DEFAULT	files from specified directories
	to be installed into
	$(INSTALL_BIN) for target archs
	with no
	BIN_INSTALLS_<osclass>
	specified
+----------------------------------+----------------------------------+	
LIB_INSTALLS	files from specified directories
	to be installed into
	$(INSTALL_LIB)
+----------------------------------+----------------------------------+	
LIB_INSTALLS_<osclass>	os class specific files from
	specified directories to be
	installed into $(INSTALL_LIB)
+----------------------------------+----------------------------------+	
LIB_INSTALLS_DEFAULT	files from specified directories
	to be installed into
	$(INSTALL_LIB) for target archs
	with no

(continues on next page)

132 Chapter 1. How this documentation is organized

EPICS Documentation

(continued from previous page)

| | LIB_INSTALLS_<osclass> |
| | specified |
+----------------------------------+----------------------------------+
| TARGETS | files to create but not install |
+----------------------------------+----------------------------------+
| INSTALL_LOCATION | installation directory (defaults |
| | to $(TOP)) |
+----------------------------------+----------------------------------+
GENVERSION	If set, the name of a generated
	header file with the module
	version string.
+----------------------------------+----------------------------------+	
GENVERSIONMACRO	The CPP macro name written into
	the generated version header
	(default MODULEVERSION).
+----------------------------------+----------------------------------+	
GENVERSIONDEFAULT	The default version string
	written into the generated
	header if no VCS system is in
	use. Leave unset to use build
	time.
+----------------------------------+----------------------------------+

Configuration Files

Base Configure Directory

The base/configure directory has the following directory structure:

base/

:

configure/

: os/ tools/

Base Configure File Descriptions

The configure files contain definitions and make rules to be included in the various makefiles.

CONFIG.CrossCommon

Definitions for all hosts and all targets for a cross build (host different than target).

CONFIG.gnuCommon

Definitions for all hosts and all targets for builds using the gnu compiler.

CONFIG_ADDONS

Definitions which setup the variables that have and DEFAULT options.

1.13. Application Developer’s Guide 133

EPICS Documentation

CONFIG_APP_INCLUDE

Definitions to generate include, bin, lib, perl module, db, and dbd directory definitions for RELEASE s.

CONFIG_BASE

EPICS base specific definitions.

CONFIG_BASE_VERSION

Definitions for the version number of EPICS base. This file is used for creating epicsVersion.h which is installed
into base/include.

CONFIG_COMMON

Definitions common to all builds.

CONFIG_ENV

Default definitions of the EPICS environment variables. This file is used for creating envData.c which is included in
the Com library.

CONFIG_FILE_TYPE

Definitions to allow user created file types.

CONFIG_SITE

File in which you add to or modify make variables in EPICS base. A definition commonly overridden is
CROSS_COMPILER_TARGET_ARCHS

CONFIG_SITE_ENV

Defaults for site specific definitions of EPICS environment variables. This file is used for creating envData.c which
is included in the Com library.

CONFIG

Include statements for all the other configure files. You can override any definitions in other CONFIG* files by placing
override definitions at the end of this file.

RELEASE

Specifies the location of external products such as Tornado II and external such as EPICS base.

RULES

This file just includes the appropriate rules configuration file.

RULES.Db

Rules for building and installing database and database definition files. Databases generated from templates and/or
CapFast schematics are supported.

RULES.ioc

Rules which allow building in the iocBoot/ directory of a makeBaseApp created ioc application.

RULES_ARCHS

Definitions and rules which allow building the make target for each target architecture.

RULES_BUILD

Build rules for the Makefiles

RULES_DIRS

134 Chapter 1. How this documentation is organized

EPICS Documentation

Definitions and rules which allow building the make targets in each subdirectory. This file is included by Makefiles in
directories with subdirectories to be built.

RULES_EXPAND

Definitions and rules to use expandVars.pl to expand @VAR@ variables in a file.

RULES_FILE_TYPE

Definitions and rules to allow user created CONFIG* and RULES* files and rules to allow user created file types.

RULES_JAVA Definitions and rules which allow building java class files and java jar files. RULES_TARGET

Makefile code to create target specific dependency lines for libraries and product targets.

RULES_TOP

Rules specific to a <top> level directory e.g. uninstall and tar. It also includes the RULES_DIRS file.

Makefile Definitions to allow creation of CONFIG_APP_INCLUDE and installation of the CONFIG* files into the
$(INSTALL_LOCATION) directory.

Base configure/os File Descriptions

The configure/os directory contains os specific make definitions. The naming convention for the files in this directory
is CONFIG.<host>.<target> where <host> is either the arch for a specific host system or Common for all supported
host systems and <target> is either the arch for a specific target system or Common for all supported target systems.

For example, the file CONFIG.Common.vxWorks-pentium will contain make definitions to be used for builds on all
host systems when building for a vxWorks-pentium target system.

Also, if a group of host or target files have the same make definitions these common definitions can be moved to a new
file which is then included in each host or target file. An example of this is all Unix hosts which have common definitions
in a CONFIG.UnixCommon.Common file and all vxWorks targets with definitions in CONFIG.Common.vxWorksCommon.

The base/configure/os directory contains the following os-arch specific definitions

CONFIG.<host>.<target>

Specific host-target build definitions

CONFIG.Common.<target>

Specific target definitions for all hosts

CONFIG.<host>.Common

Specific host definitions for all targets

CONFIG.UnixCommon.Common

Definitions for Unix hosts and all targets

CONFIG.<host>.vxWorksCommon

Specific host definitions for all vx targets

CONFIG_COMPAT

R3.13 arch compatibility definitions

CONFIG_SITE.<host>.<target>

Site specific host-target definitions

CONFIG_SITE.Common.<target>

1.13. Application Developer’s Guide 135

EPICS Documentation

Site specific target definitions for all hosts

CONFIG_SITE.<host>.Common

Site specific host definitions for all targets

Base src/tools File Descriptions

The src/tools directory contains Perl script tools used for the build. They are installed by the build into
$(INSTALL_LOCATION)/bin/$(T_A) for Host type target archs. The tools currently in this directory are:

convertRelease.pl
This Perl script does consistency checks for the external <top> definitions in the RELEASE file. This script also
creates envPaths, cdCommands, and dllPath.bat files for vxWorks and other IOCs.

cvsclean.pl
This perl script finds and deletes cvs .#* files in all directories of the directory tree.

dos2unix.pl
This perl script converts text file in DOS CR/LF format to unix ISO format.

expandVars.pl
This perl tool expands @VAR@ variables while copying a file.

filterWarnings.pl
This is a perl script that filters compiler warning output (for HP-UX).

fullpathname.pl
This perl script returns the fullpathname of a file.

installEpics.pl
This is a Perl script that installs build created files into the install directories.

makeDbDepends.pl
This perl script searches .substitutions and .template files for entries to create a DEPENDS file.

makeIncludeDbd.pl
This perl script creates an include dbd file from file names

makeMakefile.pl
This is a perl script that creates a Makefile in the created O.<arch> directories.

makeTestfile.pl
This perl script generates a file $target.t which executes a real test program in the same directory.

mkmf.pl
This perl script generates include file dependencies for targets from source file include statements.

munch.pl
This is a perl script that creates a ctdt.c file for vxWorks target arch builds which lists the c++ static constructors
and destructors. See munching in the vxWorks documentation for more information.

replaceVAR.pl
This is a perl script that changes VAR(xxx) style macros in CapFast generated databases into the $(xxx) notation
used in EPICS databases.

useManifestTool.pl
This tools uses MS Visual C++ compiler version number to determine if we want to use the Manifest Tool
(status=1) or not (status=0).

136 Chapter 1. How this documentation is organized

EPICS Documentation

Build Documentation Files

Base Documentation Directory

The base/documentation directory contains README files to help users setup and build epics/base.

Base Documentation File Descriptions

The files currently in the base/documentation directory are:

README.1st
Instructions for setup and building epics base

README.html
html version of README.1st

README.MS_WINDOWS
Microsoft WIN32 specific instructions

README.niCpu030
NI cpu030 specific instructions

README.hpux

HPUX 11 (hpux-parisc) specific instructions

README.cris
Cris architecture specific instructions

README.tru64unix
Tru64Unix/Alpha specific instructions

README.darwin.html
Installation notes for Mac OS X (Darwin)

BuildingR3.13AppsWithR3.14.html
Describes how to modify a R3.13 vxWorks application so that it builds with release R3.14.1.

ConvertingR3.13AppsToR3.14.html
Describes how to convert a R3.13 vxWorks application so that it contains a R3.14 configure directory and R3.14
Makefiles and builds with R3.14.1.

ConvertingR3.14.0alpha2AppsTobeta1.html
Describes how to modify a R3.14.0alpha1 application so that it builds with release R3.14.0beta1.

ConvertingR3.14.0beta1AppsTobeta2.html
Describes how to modify a R3.14.0beta1 application so that it builds with release R3.14.0beta2.

ConvertingR3.14.0beta2AppsToR3.14.1.html
Describes how to modify a R3.14.0beta2 application so that it builds with release R3.14.1.

ConvertingR3.14.AppsToR3.14..html
Describes how to modify a R3.14.* application so that it builds with next release after R3.14.*.

BuildingR3.13ExtensionsWithR3.14.html
Describes how to modify a R3.13 extension so that it builds with release R3.14.1.

RELEASE_NOTES.html
Describes changes in the R3.14.1 release

1.13. Application Developer’s Guide 137

EPICS Documentation

KnownProblems.html
List of known problems in EPICS base R3.14.1.

ReleaseChecklist.html
Checklist of things that must be done when creating a new release of EPICS Base.

Startup Files

Base Startup Directory

The base/startup directory contains scripts to help users set the required environment variables and path. The appro-
priate startup files should be executed before any EPICS builds.

Base Startup File Descriptions

The scripts currently in the base/startup directory are:

EpicsHostArch
c shell script to set EPICS_HOST_ARCH environment variable

EpicsHostArch.pl
perl script to set EPICS_HOST_ARCH environment variable

Site.profile
Unix bourne shell script to set path and environment variables

Site.cshrc
Unix c shell script to set path and environment variables

cygwin.bat
WIN32 bat file to set path and environment variables for building with cygwin gcc/g++ compilers

win32.bat
WIN32 bat file to set path and environment variables for building with MS Visual C++ compilers

1.13.3 EPICS Process Database Concepts

Tags: beginner user developer

Table of Contents

• EPICS Process Database Concepts

– The EPICS Process Database

– Database Functionality Specification

– Scanning Specification

∗ Periodic Scanning

∗ Event Scanning

∗ I/O Interrupt Events

∗ User-defined Events

138 Chapter 1. How this documentation is organized

EPICS Documentation

∗ Passive Scanning

∗ Channel Access Puts to Passive Scanned Records

∗ Database Links to Passive Record

∗ Forward Links

∗ Channel Access Links

∗ Maximize Severity Attribute

∗ Phase

∗ PVAccess Links

– Address Specification

∗ Hardware Addresses

∗ Database Addresses

– Conversion Specification

∗ Discrete Conversions

∗ Analog Conversions

∗ Linear Conversions

∗ Breakpoint Conversions

– Alarm Specification

∗ Alarm Severity

∗ Alarm Status

∗ Alarm Conditions Configured in the Database

∗ Alarm Handling

– Monitor Specification

∗ Rate Limits

∗ Client specific Filtering

– Control Specification

∗ Closing an Analog Control Loop

∗ Configuring an Interlock

The EPICS Process Database

An EPICS-based control system contains one or more Input Output Controllers, IOCs. Each IOC loads one or more
databases. A database is a collection of records of various types.

A Record is an object with:

• A unique name

• A behavior defined by its type

• Controllable properties (fields)

• Optional associated hardware I/O (device support)

1.13. Application Developer’s Guide 139

EPICS Documentation

• Links to other records

There are several different types of records available. In addition to the record types that are included in the EPICS
base software package, it is possible (although not recommended unless you absolutely need) to create your own record
type to perform some specific tasks.

Each record comprises a number of fields. Fields can have different functions, typically they are used to configure how
the record operates, or to store data items.

Below are short descriptions for the most commonly used record types:

Analog Input and Output (AI and AO) records can store an analog value, and are typically used for things like set-
points, temperatures, pressure, flow rates, etc. The records perform number of functions like data conversions, alarm
processing, filtering, etc.

Binary Input and Output (BI and BO) records are generally used for commands and statuses to and from equipment.
As the name indicates, they store binary values like On/Off, Open/Closed and so on.

Calc and Calcout records can access other records and perform a calculation based on their values. (E.g. calculate
the efficiency of a motor by a function of the current and voltage input and output, and converting to a percentage for
the operator to read).

Database Functionality Specification

This chapter covers the general functionality that is found in all database records. The topics covered are I/O scanning,
I/O address specification, data conversions, alarms, database monitoring, and continuous control:

• Scanning Specification describes the various conditions under which a record is processed.

• Address Specification explains the source of inputs and the destination of outputs.

• Conversion Specification covers data conversions from transducer interfaces to engineering units.

• Alarm Specification presents the many alarm detection mechanisms available in the database.

• Monitor Specification details the mechanism, which notifies operators about database value changes.

• Control Specification explains the features available for achieving continuous control in the database.

These concepts are essential in order to understand how the database interfaces with the process.

The EPICS databases can be created by manual creation of a database “myDatabase.db” text file or using visual tools
(VDCT, CapFast). Visual Database Configuration Tool (VDCT), a java application from Cosylab, is a tool for database
creation/editing that runs on Linux, Windows, and Sun. The illustrations in this document have been created with
VDCT.

Scanning Specification

Scanning determines when a record is processed. A record is processed when it performs any actions related to its
data. For example, when an output record is processed, it fetches the value which it is to output, converts the value, and
then writes that value to the specified location. Each record must specify the scanning method that determines when it
will be processed. There are three scanning methods for database records:

(1) periodic,

(2) event, and

(3) passive.

140 Chapter 1. How this documentation is organized

EPICS Documentation

Periodic scanning occurs on set time intervals.

Event scanning occurs on either an I/O interrupt event or a user-defined event.

Passive scanning occurs when the records linked to the passive record are scanned, or when a value is “put” into a
passive record through the database access routines.

For periodic or event scanning, the user can also control the order in which a set of records is processed by using the
PHASE mechanism. The number in the

PHAS field allows to define the relative order in which records are processed within a scan cycle:

• Records with PHAS=0 are processed first

• Then those with PHAS=1, PHAS=2, etc.

For event scanning, the user can control the priority at which a record will process. The PRIO field selects
Low/Medium/High priority for Soft event and I/O Interrupts.

In addition to the scan and the phase mechanisms, there are data links and forward processing links that can be used to
cause processing in other records.

Periodic Scanning

The periodic scan tasks run as close as possible to the specified frequency. When each periodic scan task starts, it calls
the gettime routine, then processes all of the records on this period. After the processing, gettime is called again and
this thread sleeps the difference between the scan period and the time to process the records. For example, if it takes
100 milliseconds to process all records with “1 second” scan period, then the 1 second scan period will start again 900
milliseconds after completion. The following periods for scanning database records are available by default, though
EPICS can be configured to recognize more scan periods:

• 10 second

• 5 second

• 2 second

• 1 second

• .5 second

• .2 second

• .1 second

The period that best fits the nature of the signal should be specified. A five-second interval is adequate for the temper-
ature of a mass of water because it does not change rapidly. However, some power levels may change very rapidly, so
they need to be scanned every 0.5 seconds. In the case of a continuous control loop, where the process variable being
controlled can change quickly, the 0.1 second interval may be the best choice.

For a record to scan periodically, a valid choice must be entered in its SCAN field. Actually, the available choices
depend on the configuration of the menuScan.dbd file. As with most other fields which consists of a menu of choices,
the choices available for the SCAN field can be changed by editing the appropriate .dbd (database definition) file. dbd
files are ASCII files that are used to generate header files that are, in turn, are used to compile the database code. Many
dbd files can be used to configure other things besides the choices of menu fields.

Here is an example of a menuScan.dbd file, which has the default menu choices for all periods listed above as well as
choices for event scanning, passive scanning, and I/O interrupt scanning:

1.13. Application Developer’s Guide 141

EPICS Documentation

menu(menuScan) {
choice(menuScanPassive,"Passive")
choice(menuScanEvent,"Event")
choice(menuScanI_O_Intr,"I/O Intr")
choice(menuScan10_second,"10 second")
choice(menuScan5_second,"5 second")
choice(menuScan2_second,"2 second")
choice(menuScan1_second,"1 second")
choice(menuScan_5_second,".5 second")
choice(menuScan_2_second,".2 second")
choice(menuScan_1_second,".1 second")

}

The first three choices must appear first and in the order shown. The remaining definitions are for the periodic scan
rates, which must appear in the order slowest to fastest (the order directly controls the thread priority assigned to the
particular scan rate, and faster scan rates should be assigned higher thread priorities). At IOC initialization, the menu
choice strings are read at scan initialization. The number of periodic scan rates and the period of each rate is determined
from the menu choice strings. Thus the periodic scan rates can be changed by changing menuScan.dbd and loading
this version via dbLoadDatabase. The only requirement is that each periodic choice string must begin with a number
and be followed by any of the following unit strings:

• second or seconds

• minute or minutes

• hour or hours

• Hz or Hertz

For example, to add a choice for 0.015 seconds, add the following line after the 0.1 second choice:

choice(menuScan_015_second, " .015 second")

The range of values for scan periods can be from one clock tick to the maximum number of ticks available on the system
(for example, vxWorks out of the box supports 0.015 seconds or a maximum frequency of 60 Hz). Note, however, that
the order of the choices is essential. The first three choices must appear in the above order. Then the remaining choices
should follow in descending order, the biggest time period first and the smallest last.

Event Scanning

There are two types of events supported in the input/output controller (IOC) database, the I/O interrupt event and the
user-defined event. For each type of event, the user can specify the scheduling priority of the event using the PRIO or
priority field. The scheduling priority refers to the priority the event has on the stack relative to other running tasks.
There are three possible choices: LOW, MEDIUM, or HIGH. A low priority event has a priority a little higher than
Channel Access. A medium priority event has a priority about equal to the median of periodic scanning tasks. A high
priority event has a priority equal to the event scanning task.

142 Chapter 1. How this documentation is organized

EPICS Documentation

I/O Interrupt Events

Scanning on I/O interrupt causes a record to be processed when a driver posts an I/O Event. In many cases these events
are posted in the interrupt service routine. For example, if an analog input record gets its value from an I/O card and it
specifies I/O interrupt as its scanning routine, then the record will be processed each time the card generates an interrupt
(not all types of I/O cards can generate interrupts). Note that even though some cards cannot actually generate interrupts,
some driver support modules can simulate interrupts. In order for a record to scan on I/O interrupts, its SCAN field
must specify I/O Intr.

User-defined Events

The user-defined event mechanism processes records that are meaningful only under specific circumstances. User-
defined events can be generated by the post_event() database access routine. Two records, the event record and the
timer record, are also used to post events. For example, there is the timing output, generated when the process is in
a state where a control can be safely changed. Timing outputs are controlled through Timer records, which have the
ability to generate interrupts. Consider a case where the timer record is scanned on I/O interrupt and the timer record’s
event field (EVNT) contains an event number. When the record is scanned, the user-defined event will be posted. When
the event is posted, all records will be processed whose SCAN field specifies event and whose event number is the same
as the generated event. User-defined events can also be generated through software. Event numbers are configurable
and should be controlled through the project engineer. They only need to be unique per IOC because they only trigger
processing for records in the same IOC.

All records that use the user-defined event mechanism must specify Event in their SCAN field and an event number in
their EVNT field.

Passive Scanning

Passive records are processed when they are referenced by other records through their link fields or when a channel
access put is done to them.

Channel Access Puts to Passive Scanned Records

In this case where a channel access put is done to a record, the field being written has an attribute that determines if this
put causes record processing. In the case of all records, putting to the VAL field causes record processing. Consider a
binary output that has a SCAN of Passive. If an operator display has a button on the VAL field, every time the button
is pressed, a channel access put is sent to the record. When the VAL field is written, the Passive record is processed
and the specified device support is called to write the newly converted RVAL to the device specified in the OUT field
through the device support specified by DTYP. Fields determined to change the way a record behaves, typical cause the
record to process. Another field that would cause the binary output to process would be the ZSV; which is the alarm
severity if the binary output record is in state Zero (0). If the record was in state 0 and the severity of being in that state
changed from No Alarm to Minor Alarm, the only way to catch this on a SCAN Passive record is to process it. Fields
are configured to cause binary output records to process in the bo.dbd file. The ZSV severity is configured as follows:

field(ZSV,DBF_MENU) {
prompt("Zero Error Severity")
promptgroup(GUI_ALARMS)
pp(TRUE)
interest(1)
menu(menuAlarmSevr)

}

where the line “pp(TRUE)” is the indication that this record is processed when a channel access put is done.

1.13. Application Developer’s Guide 143

EPICS Documentation

Database Links to Passive Record

The records in the process database use link fields to configure data passing and scheduling (or processing). These
fields are either INLINK, OUTLINK, or FWDLINK fields.

Forward Links

In the database definition file (.dbd) these fields are defined as follows:

field(FLNK,DBF_FWDLINK) {
prompt("Forward Process Link")
promptgroup(GUI_LINKS)
interest(1)

}

If the record that is referenced by the FLNK field has a SCAN field set to “Passive”, then the record is processed after
the record with the FLNK. The FLNK field only causes record processing, no data is passed. In (Figure 1), three
records are shown. The ai record “Input_2” is processed periodically. At each interval, Input_2 is processed. After
Input_2 has read the new input, converted it to engineering units, checked the alarm condition, and posted monitors
to Channel Access, then the calc record “Calculation_2” is processed. Calculation_2 reads the input, performs the
calculation, checked the alarm condition, and posted monitors to Channel Access, then the ao record “Output_2” is
processed. Output_2 reads the desired output, rate limits it, clamps the range, calls the device support for the OUT
field, checks alarms, posts monitors and then is complete.

Figure 1. Input Links

Input links normally fetch data from one field into a field in the referring record. For instance, if the INPA field of a
CALC record is set to Input_3.VAL, then the VAL field is fetched from the Input_3 record and placed in the A field
of the CALC record. These data links have an attribute that specify if a passive record should be processed before the
value is returned. The default for this attribute is NPP (no process passive). In this case, the record takes the VAL field
and returns it. If they are set to PP (process passive), then the record is processed before the field is returned.

In Figure 2), the PP attribute is used. In this example, Output_3 is processed periodically. Record processing first
fetching the DOL field. As the DOL field has the PP attribute set, before the VAL field of Calc_3 is returned, the
record is processed. The first thing done by the ai record Input_3 does is to read the input. It then converts the RVAL
field to engineering units and places this in the VAL field, checks alarms, posts monitors, and then returns. The calc
record then fetches the VAL field field from Input_3, places it in the A field, computes the calculation, checks alarms,
posts monitors, the returns. The ao record, Output_3, then fetches the VAL field from the CALC record, applies rate
of change and limits, write the new value, checks alarms, posts monitors and completes.

144 Chapter 1. How this documentation is organized

EPICS Documentation

Figure 2

In Figure 3) the PP/NPP attribute is used to calculate a rate of change. At 1 Hz, the calculation record is processed.
It fetches the inputs for the calc record in order. As INPA has an attribute of NPP, the VAL field is taken from the ai
record. Before INPB takes the VAL field from the ai record it is processed, as the attribute on this link is PP. The new
ai value is placed in the B field of the calc record. A-B is the VAL field of the ai one second ago and the current VAL
field.

Figure 3

Process Chains

Links can be used to create complex scanning logic. In the forward link example above, the chain of records is deter-
mined by the scan rate of the input record. In the PP example, the scan rate of the chain is determined by the rate of
the output. Either of these may be appropriate depending on the hardware and process limitations.

Care must be taken as this flexibility can also lead to some incorrect configurations. In these next examples we look at
some mistakes that can occur.

In Figure 4) two records that are scanned at 10 Hz make references to the same Passive record. In this case, no alarm
or error is generated. The Passive record is scanned twice at 10 Hz. The time between the two scans depends on what
records are processed between the two periodic records.

1.13. Application Developer’s Guide 145

EPICS Documentation

Figure 4

In Figure 5), several circular references are made. As the record processing is recursively called for links, the record
containing the link is marked as active during the entire time that the chain is being processed. When one of these
circular references is encountered, the active flag is recognized and the request to process the record is ignored.

Figure 5

146 Chapter 1. How this documentation is organized

EPICS Documentation

Channel Access Links

A Channel Access link is an input link or output link that specifies a link to a record located in another IOC or an input
and output link with one of the following attributes: CA, CP, or CPP.

Channel Access Input Links

If the input link specifies CA, CP, or CPP, regardless of the location of the process variable being referenced, it will
be forced to be a Channel Access link. This is helpful for separating process chains that are not tightly related. If the
input link specifies CP, it also causes the record containing the input link to process whenever a monitor is posted, no
matter what the record’s SCAN field specifies. If the input link specifies CPP, it causes the record to be processed if
and only if the record with the CPP link has a SCAN field set to Passive. In other words, CP and CPP cause the record
containing the link to be processed with the process variable that they reference changes.

Channel Access Output Links

Only CA is appropriate for an output link. The write to a field over channel access causes processing as specified in
Channel Access Puts to Passive Scanned Records.

Channel Access Forward Links

Forward links can also be Channel Access links, either when they specify a record located in another IOC or when they
specify the CA attributes. However, forward links will only be made Channel Access links if they specify the PROC
field of another record.

Maximize Severity Attribute

The Maximize Severity attribute is one of the following :

• NMS (Non-Maximize Severity)

• MS (Maximize Severity)

• MSS (Maximize Status and Severity)

• MSI (Maximize Severity if Invalid)

It determines whether alarm severity is propagated across links. If the attribute is MSI only a severity of IN-
VALID_ALARM is propagated; settings of MS or MSS propagate all alarms that are more severe than the record’s
current severity. For input links the alarm severity of the record referred to by the link is propagated to the record
containing the link. For output links the alarm severity of the record containing the link is propagated to the record
referred to by the link. If the severity is changed the associated alarm status is set to LINK_ALARM, except if the
attribute is MSS when the alarm status will be copied along with the severity.

The method of determining if the alarm status and severity should be changed is called ``maximize severity”. In addition
to its actual status and severity, each record also has a new status and severity. The new status and severity are initially
0, which means NO_ALARM. Every time a software component wants to modify the status and severity, it first checks
the new severity and only makes a change if the severity it wants to set is greater than the current new severity. If it does
make a change, it changes the new status and new severity, not the current status and severity. When database monitors
are checked, which is normally done by a record processing routine, the current status and severity are set equal to
the new values and the new values reset to zero. The end result is that the current alarm status and severity reflect the
highest severity outstanding alarm. If multiple alarms of the same severity are present the alarm status reflects the first
one detected.

1.13. Application Developer’s Guide 147

EPICS Documentation

Phase

The PHAS field is used to order the processing of records that are scanned at the same time, i.e., records that are
scanned periodically at the same interval and priority, or that are scanned on the same event. In this manner records
dependent upon other records can be assured of using current data.

To illustrate this we will look at an example from the previous section, with the records, however, being scanned
periodically instead of passively (Figure 6). In this example each of these records specifies .1 second; thus, the records
are synchronous. The phase sequence is used to assure that the analog input is processed first, meaning that it fetches
its value from the specified location and places it in the VAL field (after any conversions). Next, the calc record will
be processed, retrieving its value from the analog input and performing its calculation. Lastly, the analog output will
be processed, retrieving its desired output value from the calc record’s VAL field (the VAL field contains the result of
the calc record’s calculations) and writing that value to the location specified it its OUT link. In order for this to occur,
the PHAS field of the analog input record must specify 0, the PHAS field of the calculation record must specify 1, and
the analog output’s PHAS field must specify 2.

Figure 6

It is important to understand that in the above example, no record causes another to be processed. The phase mechanism
instead causes each to process in sequence.

PVAccess Links

When built against Base >= 3.16.1, support is enabled for PVAccess links, which are analogous to Channel Access
(CA) links. However, the syntax for PVA links is quite different.

The authoritative documentation is available in the git repository, pva2pva.

Note: The “dbjlr” and “dbpvar” IOC shell command provide information about PVA links in a running IOC.

A simple configuration using defaults is

record(longin, "tgt") {}
record(longin, "src") {
field(INP, {pva:"tgt"})

}

This is a shorthand for

148 Chapter 1. How this documentation is organized

https://epics-base.github.io/pva2pva/qsrv_page.html#qsrv_link

EPICS Documentation

record(longin, "tgt") {}
record(longin, "src") {

field(INP, {pva:{pv:"tgt"}})
}

Some additional keys (beyond “pv”) may be used. Defaults are shown in the example below:

record(longin, "tgt") {}
record(longin, "src") {
field(INP, {pva:{
pv:"tgt",
field:"", # may be a sub-field
local:false,# Require local PV
Q:4, # monitor queue depth
pipeline:false, # require that server uses monitor
flow control protocol
proc:none, # Request record processing
#(side-effects).
sevr:false, # Maximize severity.
time:false, # set record time during getValue
monorder:0, # Order of record processing as a result #of CP and CPP
retry:false,# allow Put while disconnected.
always:false,# CP/CPP input link process even when # .value field hasn't changed
defer:false # Defer put

}})
}

pv: Target PV name

The PV name to search for. This is the same name which could be used with ‘pvget’ or other client tools.

field: Structure field name

The name of a sub-field of the remotely provided Structure. By default, an empty string “” uses the top-level Structure.

If the top level structure, or a sub-structure is selected, then it is expeccted to conform to NTScalar, NTScalarArray, or
NTEnum to extract value and meta-data.

If the sub-field is an PVScalar or PVScalarArray, then a value will be taken from it, but not meta-data will be available.

local: Require local PV

When true, link will not connect unless the named PV is provided by the local (QSRV) data provider.

1.13. Application Developer’s Guide 149

EPICS Documentation

Q: Monitor queue depth

Requests a certain monitor queue depth. The server may, or may not, take this into consideration when selecting a
queue depth.

pipeline: Monitor flow control

Expect that the server supports PVA monitor flow control. If not, then the subscription will stall (ick.)

proc: Request record processing (side-effects)

The meaning of this option depends on the direction of the link.

For output links, this option allows a request for remote processing (side-effects).

• none (default) - Make no special request. Uses a server specific default.

• false, “NPP” - Request to skip processing.

• true, “PP” - Request to force processing.

• “CP”, “CPP” - For output links, an alias for “PP”.

For input links, this option controls whether the record containing the PVA link will be processed when subscription
events are received.

• none (default), false, “NPP” - Do not process on subscription updates.

• true, “CP” - Always process on subscription updates.

• “PP”, “CPP” - Process on subscription updates if SCAN=Passive

sevr: Alarm propagation

This option controls whether reading a value from an input PVA link has the addition effect of propagating any alarm
via the Maximize Severity process.

• false - Do not maximize severity.

• true - Maximize alarm severity

• “MSI” - Maximize only if the remote severity is INVALID.

time: Time propagation

Somewhat analogous to sevr: applied to timestamp. When true, the record TIME field is updated when the link value
is read.

Warning

TSEL must be set to -2 for time:true to have an effect.

150 Chapter 1. How this documentation is organized

EPICS Documentation

monorder: Monitor processing order

When multiple record target the same target PV, and request processing on subscription updates. This option allows
the order of processing to be specified.

Record are processed in increasing order. monorder=-1 is processed before monorder=0. Both are processed before
monorder=1.

defer: Defer put

By default (defer=false) an output link will immediately start a PVA Put operation. defer=true will store the new value
in an internal cache, but not start a PVA Put.

This option, in combination with field: allows a single Put to contain updates to multiple sub-fields.

retry: Put while disconnected

Allow a Put operation to be queued while the link is disconnected. The Put will be executed when the link becomes
connected.

always: CP/CPP always process

By default (always:false) a subscription update will only cause a CP input link to scan if the structure field (cf. field:
option) is marked as changed. Set to true to override this, and always process the link.

Link semantics/behavior

This section attempts to answer some questions about how links behave in certain situations.

Links are evaluated in three basic contexts.

• dbPutLink()/dbScanFwdLink()

• dbGetLink() of non-CP link

• dbGetLink() during a scan resulting from a CP link.

An input link can bring in a Value as well as meta-data, alarm, time, and display/control info. For input links, the PVA
link engine attempts to always maintain consistency between Value, alarm, and time. However, consistency between
these, and the display/control info is only ensured during a CP scan.

Address Specification

Address parameters specify where an input record obtains input, where an output record obtains its desired output
values, and where an output record writes its output. They are used to identify links between records, and to specify
the location of hardware devices. The most common link fields are OUT, an output link, INP, an input link, and DOL
(desired output location), also an input link.

There are three basic types of address specifications, which can appear in these fields: hardware addresses, database
addresses, and constants. Note that not all links support all three types, though some do. However, this doesn’t hold
true for algorithmic records, which cannot specify hardware addresses. Algorithm records are records like the Calcu-
lation, PID, and Select records. These records are used to process values retrieved from other records. Consult the
documentation for each record.

1.13. Application Developer’s Guide 151

EPICS Documentation

Hardware Addresses

The interface between EPICS process database logic and hardware drivers is indicated in two fields of records that
support hardware interfaces: DTYP and INP/OUT. The DTYP field is the name of the device support entry table that
is used to interface to the device. The address specification is dictated by the device support. Some conventions exist
for several buses that are listed below. Lately, more devices have just opted to use a string that is then parsed by the
device support as desired. This specification type is called INST I/O. The other conventions listed here include: VME,
Allen-Bradley, CAMAC, GPIB, BITBUS, VXI, and RF. The input specification for each of these is different. The
specification of these strings must be acquired from the device support code or document.

INST

The INST I/O specification is a string that is parsed by the device support. The format of this string is determined by
the device support.

@parm

For INST I/O

• @ precedes optional string parm

VME Bus

The VME address specification format differs between the various devices. In all of these specifications the ‘#’ character
designates a hardware address. The three formats are:

#Cx Sy @parm

For analog in, analog out, and timer

• C precedes the card number x

• S precedes the signal number y

• @ precedes optional string parm

The card number in the VME addresses refers to the logical card number. Card numbers are assigned by address
convention; their position in the backplane is of no consequence. The addresses are assigned by the technician who
populates the backplane, with the logical numbers welldocumented. The logical card numbers start with 0 as do the
signal numbers. parm refers to an arbitrary string of up to 31 characters and is device specific.

Allen-Bradley Bus

The Allen-Bradley address specification is a bit more complicated as it has several more fields. The ‘#’ designates a
hardware address. The format is:

#La Ab Cc Sd @parm’

All record types

• L precedes the serial link number a and is optional - default 0

• A precedes the adapter number b and is optional - default 0

• C precedes the card number c

• S precedes the signal number d

• @ precedes optional string parm

152 Chapter 1. How this documentation is organized

EPICS Documentation

The card number for Allen-Bradley I/O refers to the physical slot number, where 0 is the slot directly to the right of
the adapter card. The AllenBradley I/O has 12 slots available for I/O cards numbered 0 through 11. Allen-Bradley I/O
may use double slot addresses which means that slots 0,2,4,6,8, and 10 are used for input modules and slots 1,3,5,7,9
and 11 are used for output modules. It’s required to use the double slot addressing mode when the 1771IL card is used
as it only works in double slot addressing mode. This card is required as it provides Kilovolt isolation.

Camac Bus

The CAMAC address specification is similar to the Allen-Bradley address specification. The ‘#’ signifies a hardware
address. The format is:

#Ba Cb Nc Ad Fe @parm

For waveform digitizers

• B precedes the branch number a C precedes the crate number b

• N precedes the station number c

• A precedes the subaddress d (optional)

• F precedes the function e (optional)

• @ precedes optional string parm

The waveform digitizer supported is only one channel per card; no channel was necessary.

Others

The GPIB, BITBUS, RF, and VXI card-types have been added to the supported I/O cards. A brief description of the
address format for each follows. For a further explanation, see the specific documentation on each card.

#La Ab @parm
For GPIB I/O

• L precedes the link number a

• A precedes the GPIB address b

• @ precedes optional string parm

#La Nb Pc Sd @parm

For BITBUS I/O

• L precedes the link a, i.e., the VME bitbus interface

• N precedes the bitbus node b

• P precedes the port on node c

• S precedes the signal on port d

• @ precedes optional string parm

#Va Cb Sc @parm

For VXI I/O, dynamic addressing

• V precedes the VXI frame number a

• C precedes the slot within VXI frame b

• S precedes the signal number c

1.13. Application Developer’s Guide 153

EPICS Documentation

• @ precedes optional string parm

#Va Sb @parm

For VXI I/O, static addressing

• V precedes the logical address a

• S precedes the signal number b

• @ precedes optional string parm

Database Addresses

Database addresses are used to specify input links, desired output links, output links, and forward processing links.
The format in each case is the same:

<RecordName>.<FieldName>

where RecordName is simply the name of the record being referenced, ‘.’ is the separator between the record name
and the field name, and FieldName is the name of the field within the record.

The record name and field name specification are case sensitive. The record name can be a mix of the following: a-z
A-Z 0-9 _ - : . [] < > ;. The field name is always upper case. If no field name is specified as part of an address, the
value field (VAL) of the record is assumed. Forward processing links do not need to include the field name because
no value is returned when a forward processing link is used; therefore, a forward processing link need only specify a
record name.

Basic typecast conversions are made automatically when a value is retrieved from another record–integers are converted
to floating point numbers and floating point numbers are converted to integers. For example, a calculation record which
uses the value field of a binary input will get a floating point 1 or 0 to use in the calculation, because a calculation record’s
value fields are floating point numbers. If the value of the calculation record is used as the desired output of a multi-bit
binary output, the floating point result is converted to an integer, because multi-bit binary outputs use integers.

Records that use soft device support routines or have no hardware device support routines are called soft records. See
the chapter on each record for information about that record’s device support.

Constants

Input link fields and desired output location fields can specify a constant instead of a hardware or database address. A
constant, which is not really an address, can be an integer value in whatever format (hex, decimal, etc.) or a floating-
point value. The value field is initialized to the constant when the database is initialized, and at run-time the value field
can be changed by a database access routine. For instance, a constant may be used in an input link of a calculation record.
For non-constant links, the calc record retrieves the values from the input links, and places them in a corresponding
value field. For constant links, the value fields are initialized with the constant, and the values can be changed by
modifying the value field, not the link field. Thus, because the calc record uses its value fields as the operands of its
expression, the constant becomes part of the calculation.

When nothing is specified in a link field, it is a NULL link. Before Release 3.13, the value fields associated with the
NULL link were initialized with the value of zero. From Release 3.13 onwards, the value fields associated with the
links are not initialized.

A constant may also be used in the desired output location or DOL field of an output record. In such a case, the initial
desired output value (VAL) will be that constant. Any specified conversions are performed on the value before it is
written as long as the device support module supports conversions (the Soft Channel device support routine does not
perform conversions). The desired output value can be changed by an operator at run-time by writing to the value field.

A constant can be used in an output link field, but no output will be written if this is the case. Be aware that this is not
considered an error by the database checking utilities.

154 Chapter 1. How this documentation is organized

EPICS Documentation

Conversion Specification

Conversion parameters are used to convert transducer data into meaningful data. Discrete signals require converting
between levels and states (i.e., on, off, high, low, etc.). Analog conversions require converting between levels and engi-
neering units (i.e., pressure, temperature, level, etc.). These conversions are made to provide operators and application
codes with values in meaningful units.

The following sections discuss these types of conversions. The actual field names appear in capital letters.

Discrete Conversions

The most simple type of discrete conversion would be the case of a discrete input that indicates the on/off state of a
device. If the level is high it indicates that the state of the device is on. Conversely, if the level is low it indicates that the
device is off. In the database, parameters are available to enter strings which correspond to each level, which, in turn,
correspond to a state (0,1). By defining these strings, the operator is not required to know that a specific transducer is
on when the level of its transmitter is high or off when the level is low. In a typical example, the conversion parameters
for a discrete input would be entered as follows:

Zero Name (ZNAM): Off
One Name (ONAM): On

The equivalent discrete output example would be an on/off controller. Let’s consider a case where the safe state of a
device is On, the zero state. The level being low drives the device on, so that a broken cable will drive the device to a
safe state. In this example the database parameters are entered as follows:

Zero Name (ZNAM): On
One Name (ONAM): Off

By giving the outside world the device state, the information is clear. Binary inputs and binary outputs are used to
represent such on/off devices.

A more complex example involving discrete values is a multi-bit binary output record. Consider a two state valve which
has four states-Traveling, full open, full closed, and disconnected. The bit pattern for each control state is entered into
the database with the string that describes that state. The database parameters for the monitor would be entered as
follows:

Number of Bits (NOBT): 2
First Input Bit Spec (INP): Address of the least significant bit
Zero Value (ZRVL): 0
One Value (ONVL): 1
Two Value (TWVL): 2
Three Value (THVL): 3
Zero String (ZRST): Traveling
One String (ONST): Open
Two String (TWST): Closed
Three String (THST): Disconnected

1.13. Application Developer’s Guide 155

EPICS Documentation

In this case, when the database record is scanned, the monitor bits are read and compared with the bit patterns for each
state. When the bit pattern is found, the device is set to that state. For instance, if the two monitor bits read equal 10
(binary), the Two value is the corresponding value, and the device would be set to state 2 which indicates that the valve
is Closed.

If the bit pattern is not found, the device is in an unknown state. In this example all possible states are defined.

In addition, the DOL fields of binary output records (bo and mbbo) will accept values in strings. When they retrieve
the string or when the value field is given a string via put_enum_strs, a match is sought with one of the states. If a
match is found, the value for that state is written.

Analog Conversions

Analog conversions require knowledge of the transducer, the filters, and the I/O cards. Together they measure the pro-
cess, transmit the data, and interface the data to the IOC. Smoothing is available to filter noisy signals. The smoothing
argument is a constant between 0 and 1 and is specified in the SMOO field. It is applied to the converted hardware
signal as follows:

eng units = (new eng units × (1 - smoothing)) + (old eng units × smoothing)

The analog conversions from raw values to engineering units can be either linear or breakpoint conversions.

Whether an analog record performs linear conversions, breakpoint conversions, or no conversions at all depends on
how the record’s LINR field is configured. The possible choices for the LINR field are as follows:

• LINEAR

• SLOPE

• NO CONVERSION

• typeKdegF

• typeKdegC

• typeJdegF

• typeJdegC

If either LINEAR or SLOPE is chosen, the record performs a linear conversion on the data. If NO CONVERSION is
chosen, the record performs no conversion on its data. The other choices are the names of breakpoint tables. When
one of these is specified in the LINR field, the record uses the specified table to convert its data.

Note: Additional breakpoint tables are often added at specific sites, so more breakpoint tables than are listed here may
be available at the user’s site.

The following sections explain linear and breakpoint conversions.

156 Chapter 1. How this documentation is organized

EPICS Documentation

Linear Conversions

The engineering units full scale and low scale are specified in the EGUF and EGUL fields, respectively. The values of
the EGUF and EGUL fields correspond to the maximum and minimum values of the transducer, respectively. Thus,
the value of these fields is device dependent. For example, if the transducer has a range of -10 to +10 volts, then the
EGUF field should be 10 and the EGUL field should be -10. In all cases, the EGU field is a string that contains the text
to indicate the units of the value.

The distinction between the LINEAR and SLOPE settings for the LINR field are in how the conversion parameters are
calculated:

With LINEAR conversion the user must set EGUL and EGUF to the lowest and highest possible engineering units
values respectively that can be converted by the hardware. The device support knows the range of the raw data and
calculates ESLO and EOFF from them.

SLOPE conversion requires the user to calculate the appropriate scaling and offset factors and put them directly in
ESLO and EOFF.

There are three formulas to know when considering the linear conversion parameters. The conversion from measured
value to engineering units is as follows:

engunits = eng units low +
measured A/D counts
full scale A/D counts

* (eng units full scale - eng units low)

In the following examples the determination of engineering units full scale and low scale is shown. The conversion
to engineering units is also shown to familiarize the reader with the signal conversions from signal source to database
engineering units.

Transducer Matches the I/O module

First let us consider a linear conversion. In this example, the transducer transmits 0-10 Volts, there is no amplification,
and the I/O card uses a 0-10 Volt interface.

The transducer transmits pressure: 0 PSI at 0 Volts and 175 PSI at 10 Volts. The engineering units full scale and low
scale are determined as follows:

eng. units full scale = 17.5 × 10.0
eng. units low scale = 17.5 × 0.0

The field entries in an analog input record to convert this pressure will be as follows:

LINR: Linear
EGUF: 175.0
EGUL: 0
EGU: PSI

1.13. Application Developer’s Guide 157

EPICS Documentation

The conversion will also take into account the precision of the I/O module. In this example (assuming a 12 bit analog
input card) the conversion is as follows:

eng units = 0 +
measured A/D counts

4095
* (175− 0)

When the pressure is 175 PSI, 10 Volts is sent to the I/O module. At 10 Volts the signal is read as 4095. When this is
plugged into the conversion, the value is 175 PSI.

Transducer Lower than the I/O module

Let’s consider a variation of this linear conversion where the transducer is 0-5 Volts.

In this example the transducer is producing 0 Volts at 0 PSI and 5 Volts at 175 PSI. The engineering units full scale
and low scale are determined as follows:

eng. units low scale = 35 × 10 eng. units full scale = 35 × 0

The field entries in an analog record to convert this pressure will be as follows:

LINR: Linear
EGUF: 350
EGUL: 0
EGU: PSI

The conversion will also take into account the precision of the I/O module. In this example (assuming a 12 bit analog
input card) the conversion is as follows:

eng units = 0 +
measured A/D counts

4095
* (350− 0)

Notice that at full scale the transducer will generate 5 Volts to represent 175 PSI. This is only half of what the input
card accepts; input is 2048.

Let’s plug in the numbers to see the result:

0 + (2048/4095) * (350− 0) = 175

In this example we had to adjust the engineering units full scale to compensate for the difference between the transmitter
and the analog input card.

158 Chapter 1. How this documentation is organized

EPICS Documentation

Transducer Positive and I/O module bipolar

Let’s consider another variation of this linear conversion where the input card accepts -10 Volts to 10 Volts (i.e. Bipolar
instead of Unipolar).

In this example the transducer is producing 0 Volts at 0 PSI and 10 Volts at 175 PSI. The input module has a different
range of voltages and the engineering units full scale and low scale are determined as follows:

eng. units full scale = 17.5 × 10 eng. units low scale = 17.5 × (-10)

The database entries to convert this pressure will be as follows:

LINR: Linear
EGUF: 175
EGUL: -175
EGU: PSI

The conversion will also take into account the precision of the I/O module. In this example (assuming a 12 bit analog
input card) the conversion is as follows:

eng units = −175 +
measured A/D counts

4095
* (175− (−175))

Notice that at low scale the transducer will generate 0 Volts to represent 0 PSI. Because this is half of what the input
card accepts, it is input as 2048. Let’s plug in the numbers to see the result:

−175 + (2048/4095) * (175− (−175)) = 0

In this example we had to adjust the engineering units low scale to compensate for the difference between the unipolar
transmitter and the bipolar analog input card.

Combining Linear Conversion with an Amplifier

Let’s consider another variation of this linear conversion where the input card accepts -10 Volts to 10 Volts, the trans-
ducer transmits 0 - 2 Volts for 0 - 175 PSI and a 2x amplifier is on the transmitter.

At 0 PSI the transducer transmits 0 Volts. This is amplified to 0 Volts. At half scale, it is read as 2048. At 175 PSI, full
scale, the transducer transmits 2 Volts, which is amplified to 4 Volts. The analog input card sees 4 Volts as 70 percent
of range or 2867 counts. The engineering units full scale and low scale are determined as follows:

eng units full scale = 43.75 × 10
eng units low scale = 43.75 × (-10)

1.13. Application Developer’s Guide 159

EPICS Documentation

(175 / 4 = 43.75) The record’s field entries to convert this pressure will be as follows:

LINR Linear
EGUF 437.5
EGUL -437.5
EGU PSI

The conversion will also take into account the precision of the I/O module. In this example (assuming a 12 bit analog
input card) the conversion is as follows:

eng units = −437.5 +
measured A/D counts

4095
* (437.5− (−437.5))

Notice that at low scale the transducer will generate 0 Volts to represent 0 PSI. Because this is half of what the input
card accepts, it is input as 2048. Let’s plug in the numbers to see the result:

−437.5 + (2048/4095) * (437.5− (−437.5)) = 0

Notice that at full scale the transducer will generate 2 volts which represents 175 PSI. The amplifier will change the 2
Volts to 4 Volts. 4 Volts is 14/20 or 70 percent of the I/O card’s scale. The input from the I/O card is therefore 2866
(i.e., 0.7 * 4095). Let’s plug in the numbers to see the result:

−437.5 + (2866/4095) * (437.5− (−437.5)) = 175𝑃𝑆𝐼

We had to adjust the engineering units full scale to adjust for the difference between the transducer with the amplifier
affects and the range of the I/O card. We also adjusted the low scale to compensate for the difference between the
unipolar transmitter/amplifier and the bipolar analog input card.

Breakpoint Conversions

Now let us consider a non-linear conversion. These are conversions that could be entered as polynomials. As these
are more time consuming to execute, a breakpoint table is created that breaks the non-linear conversion into linear
segments that are accurate enough.

Breakpoint Table

The breakpoint table is then used to do a piecewise linear conversion. Each piecewise segment of the breakpoint table
contains:

Raw Value Start for this segment, Engineering Units at the start.

breaktable(typeJdegC) {
0.000000 0.000000
365.023224 67.000000
1000.046448 178.000000
3007.255859 524.000000
3543.383789 613.000000
4042.988281 692.000000
4101.488281 701.000000

}

160 Chapter 1. How this documentation is organized

EPICS Documentation

Breakpoint Conversion Example

When a new raw value is read, the conversion routine starts from the previously used line segment, compares the raw
value start, and either going forward or backward in the table searches the proper segment for this new raw value. Once
the proper segment is found, the new engineering units value is the engineering units value at the start of this segment
plus the slope of this segment times the position on this segment.

value = eng.units at segment start + (raw value - raw at segment start) * slope

A table that has an entry for each possible raw count is effectively a look up table.

Breakpoint tables are loaded to the IOC using the dbLoadDatabase shell function. The slope corresponding to each
segment is calculated when the table is loaded. For raw values that exceed the last point in the breakpoint table, the
slope of the last segment is used.

In this example the transducer is a thermocouple which transmits 0-20 milliAmps. An amplifier is present which
amplifies milliAmps to volts. The I/O card uses a 0-10 Volt interface and a 12-bit ADC. Raw value range would thus
be 0 to 4095.

The transducer is transmitting temperature. The database entries in the analog input record that are needed to convert
this temperature will be as follows:

LINR typeJdegC
EGUF 0
EGUL 0
EGU DGC

For analog records that use breakpoint tables, the EGUF and EGUL fields are not used in the conversion, so they do
not have to be given values.

With this example setup and assuming we get an ADC raw reading of 3500, the formula above would give:

Value = 524.0 + (3500 - 3007) * 0.166 = 605.838 DGC

EPICS Base distribution currently includes lookup tables for J and K thermocouples in degrees F and degrees C.

Other potential applications for a lookup table are e.g. other types of thermocouples, logarithmic output controllers,
and exponential transducers. The piece-wise linearization of the signals provides a mechanism for conversion that
minimizes the amount of floating point arithmetic required to convert non-linear signals. Additional breakpoint tables
can be added to the predefined ones.

1.13. Application Developer’s Guide 161

EPICS Documentation

Creating Breakpoint Tables

There are two ways to create a new breakpoint table:

1) Simply type in the data for each segment, giving the raw and corresponding engineering unit value for each point in
the following format.

breaktable(<tablename>) {
<first point> <first eng units>
<next point> <next eng units>
<etc.> <...>

}

where the <tablename> is the name of the table, such as typeKdegC, and <first point> is the raw value of the beginning
point for each line segment, and <first eng units> is the corresponding engineering unit value. The slope is calculated
by the software and should not be specified.

2) Create a file consisting of a table of an arbitrary number of values in engineering units and use the utility called
makeBpt to convert the table into a breakpoint table. As an example, the contents data file to create the typeJdegC
breakpoint table look like this:

!header
"typeJdegC" 0 0 700 4095 .5 -210 760 1
!data
-8.096 -8.076 -8.057 <many more numbers>

The file name must have the extension .data. The file must first have a header specifying these nine things:

1. Name of breakpoint table in quotes: “typeJdegC”

2. Engineering units for 1st breakpoint table entry: 0

3. Raw value for 1st breakpoint table entry: 0

4. Highest value desired in engineering units: 700

5. Raw value corresponding to high value in engineering units: 4095

6. Allowed error in engineering units: .5

7. Engineering units corresponding to first entry in data table: -210

8. Engineering units corresponding to last entry in data table: 760

9. Change in engineering units between data table entries: 1

The rest of the file contains lines of equally spaced engineering values, with each line no more than 160 characters
before the new-line character. The header and the actual table should be specified by !header and !data, respectively.
The file for this data table is called typeJdegC.data, and can be converted to a breakpoint table with the makeBpt utility
as follows:

unix% makeBpt typeJdegC.data

162 Chapter 1. How this documentation is organized

EPICS Documentation

Alarm Specification

There are two elements to an alarm condition: the alarm status and the severity of that alarm. Each database record
contains its current alarm status and the corresponding severity for that status. The scan task, which detects these
alarms, is also capable of generating a message for each change of alarm state. The types of alarms available fall into
these categories: scan alarms, read/write alarms, limit alarms, and state alarms. Some of these alarms are configured by
the user, and some are automatic which means that they are called by the record support routines on certain conditions,
and cannot be changed or configured by the user.

Alarm Severity

An alarm severity is used to give weight to the current alarm status. There are four severities:

• NO_ALARM

• MINOR

• MAJOR

• INVALID

NO_ALARM means no alarm has been triggered. An alarm state that needs attention but is not dangerous is a MINOR
alarm. In this instance the alarm state is meant to give a warning to the operator. A serious state is a MAJOR alarm.
In this instance the operator should give immediate attention to the situation and take corrective action. An INVALID
alarm means there’s a problem with the data, which can be any one of several problems; for instance, a bad address
specification, device communication failure, or signal is over range. In these cases, an alarm severity of INVALID is
set. An INVALID alarm can point to a simple configuration problem or a serious operational problem.

For limit alarms and state alarms, the severity can be configured by the user to be MAJOR or MINOR for the a specified
state. For instance, an analog record can be configured to trigger a MAJOR alarm when its value exceeds 175.0. In
addition to the MAJOR and MINOR severity, the user can choose the NO_ALARM severity, in which case no alarm
is generated for that state.

For the other alarm types (i.e., scan, read/write), the severity is always INVALID and not configurable by the user.

Alarm Status

Alarm status is a field common to all records. The field is defined as an enumerated field. The possible states are listed
below.

• NO_ALARM: This record is not in alarm

• READ: An INPUT link failed in the device support

• WRITE: An OUTPUT link failed in the device support

• HIHI: An analog value limit alarm

• HIGH: An analog value limit alarm

• LOLO: An analog value limit alarm

• LOW: An analog value limit alarm

• STATE: An digital value state alarm

• COS: An digital value change of state alarm

• COMM: A device support alarm that indicates the device is not communicating

• TIMEOUT: A device sup alarm that indicates the asynchronous device timed out

1.13. Application Developer’s Guide 163

EPICS Documentation

• HWLIMIT: A device sup alarm that indicates a hardware limit alarm

• CALC: A record support alarm for calculation records indicating a bad calculation

• SCAN: An invalid SCAN field is entered

• LINK: Soft device support for a link failed:no record, bad field, invalid conversion, INVALID alarm severity on
the referenced record.

• SOFT

• BAD_SUB

• UDF

• DISABLE

• SIMM

• READ_ACCESS

• WRITE_ACCESS

There are a number of issues with this field and menu.

• The maximum enumerated strings passed through channel access is 16 so nothing past SOFT is seen if the value
is not requested by Channel Access as a string.

• Only one state can be true at a time so that the root cause of a problem or multiple problems are masked. This
is particularly obvious in the interface between the record support and the device support. The hardware could
have some combination of problems and there is no way to see this through the interface provided.

• The list is not complete.

• In short, the ability to see failures through the STAT field are limited. Most problems in the hardware, configu-
ration, or communication are reduced to READ or WRITE error and have their severity set to INVALID. When
you have an INVALID alarm severity, some investigation is currently needed to determine the fault. Most EPICS
drivers provide a report routine that dumps a large set of diagnostic information. This is a good place to start in
these cases.

Alarm Conditions Configured in the Database

When you have a valid value, there are fields in the record that allow the user to configure off normal conditions. For
analog values these are limit alarms. For discrete values, these are state alarms.

Limit Alarms

For analog records (this includes such records as the stepper motor record), there are configurable alarm limits. There
are two limits for above normal operating range and two limits for the below-limit operating range. Each of these limits
has an associated alarm severity, which is configured in the database. If the record’s value drops below the low limit
and an alarm severity of MAJOR was specified for that limit, then a MAJOR alarm is triggered. When the severity of
a limit is set to NO_ALARM, none will be generated, even if the limit entered has been violated.

There are two limits at each end, two low values and two high values, so that a warning can be set off before the value
goes into a dangerous condition.

Analog records also contain a hysteresis field, which is also used when determining limit violations. The hysteresis
field is the deadband around the alarm limits. The deadband keeps a signal that is hovering at the limit from generating
too many alarms. Let’s take an example (Figure 8) where the range is -100 to 100 volts, the high alarm limit is 30 Volts,
and the hysteresis is 10 Volts. If the value is normal and approaches the HIGH alarm limit, an alarm is generated when

164 Chapter 1. How this documentation is organized

EPICS Documentation

the value reaches 30 Volts. This will only go to normal if the value drops below the limit by more than the hysteresis.
For instance, if the value changes from 30 to 28 this record will remain in HIGH alarm. Only when the value drops to
20 will this record return to normal state.

Figure 8

State Alarms

For discrete values there are configurable state alarms. In this case a user may configure a certain state to be an alarm
condition. Let’s consider a cooling fan whose discrete states are high, low, and off. The off state can be configured
to be an alarm condition so that whenever the fan is off the record is in a STATE alarm. The severity of this error is
configured for each state. In this example, the low state could be a STATE alarm of MINOR severity, and the off state
a STATE alarm of MAJOR severity.

Discrete records also have a field in which the user can specify the severity of an unknown state to NO_ALARM,
MINOR or MAJOR. Thus, the unknown state alarm is not automatic.

Discrete records also have a field, which can specify an alarm when the record’s state changes. Thus, an operator can
know when the record’s alarm state has changed. If this field specifies NO_ALARM, then a change of state will not
trigger a change of state alarm. However, if it specifies either MINOR or MAJOR, a change of state will trigger an
alarm with the corresponding severity.

Alarm Handling

A record handles alarms with the NSEV, NSTA, SEVR, and STAT fields. When a software component wants to raise
an alarm, it first checks the new alarm state fields: NSTA, new alarm state, and NSEV, new alarm severity. If the
severity in the NSEV field is higher than the severity in the current severity field (SEVR), then the software component
sets the NSTA and NSEV fields to the severity and alarm state that corresponds to the outstanding alarm. When the
record process routine next processes the record, it sets the current alarm state (STAT) and current severity

(SEVR) to the values in the NSEV and NSTA fields. This method of handling alarms ensures that the current severity
(STAT) reflects the

highest severity of outstanding alarm conditions instead of simply the last raised alarm. This also means that the if
multiple alarms of equal severity are present, the alarm status indicates the first one detected.

In addition, the get_alarm_double() routine can be called to format an alarm message and send it to an alarm handler.
The alarm conditions may be monitored by the operator interface by explicitly monitoring the STAT and SEVR fields.
All values monitored by the operator interface are returned from the database access with current status information.

1.13. Application Developer’s Guide 165

EPICS Documentation

Monitor Specification

EPICS provides the methods for clients to subscribe to be informed of changes in a PV; in EPICS vocabulary this
method is called “monitor”.

In Channel Access, as well as PVAccess clients connect to PVs to put, get, or monitor. There are fields in the EPICS
records that help limit the monitors posted to these clients through the CA or PVA Server. These fields most typically
apply when the client is monitoring the VAL field of a record. Most other fields post a monitor whenever they are
changed. For instance, a put to an alarm limit, causes a monitor to be posted to any client that is monitoring that field.
The client can select. . .

For more information about using monitors, see the Channel Access Reference Guide.

Rate Limits

The inherent rate limit is the rate at which the record is scanned. Monitors are only posted when the record is processed
as a minimum. There are currently no mechanisms for the client to rate limit a monitor. If a record is being processed
at a much higher rate than an application wants, either the database developer can make a second record at a lower rate
and have the client connect to that version of the record or the client can disregard the monitors until the time stamp
reflects the change.

Channel Access Deadband Selection

The Channel Access client can set a mask to indicate which alarm change it wants to monitor. There are three: value
change, archive change, and alarm change.

Value Change Monitors

The value change monitors are typically sent whenever a field in the database changes. The VAL field is the exception.
If the MDEL field is set, then the VAL field is sent when a monitor is set, and then only sent again, when the VAL field
has changed by MDEL.

..note:

A MDEL of 0 sends a monitor whenever the VAL fields changes and an MDEL of -1
sends a monitor whenever the record is processed as the MDEL is applied
to the absolute value of the difference between the previous scan and
the current scan. An MDEL of -1 is useful for scalars that are triggered
and a positive indication that the trigger occurred is required.

Archive Change Monitors

The archive change monitors are typically sent whenever a field in the database changes. The VAL field is the exception.
If the ADEL field is set, then the VAL field is sent when a monitor is set, and then only sent again, when the VAL field
has changed by ADEL.

166 Chapter 1. How this documentation is organized

EPICS Documentation

Alarm Change Monitors

The alarm change monitors are only sent when the alarm severity or status change. As there are filters on the alarm
condition checking, the change of alarm status or severity is already filtered through those mechanisms. These are
described in Alarm Specification.

Metadata Changes

When a Channel Access Client connects to a field, it typically requests some metadata related to that field. One case
is a connection from an operator interface typically requests metadata that includes: display limits, control limits, and
display information such as precision and engineering units. If any of the fields in a record that are included in this
metadata change after the connection is made, the client is not informed and therefore this is not reflected unless the
client disconnects and reconnects. A new flag is being added to the Channel Access Client to support posting a monitor
to the client whenever any of this metadata changes. Clients can then request the metadata and reflect the change.

Stay tuned for this improvement in the record support and channel access clients.

Client specific Filtering

Several situation have come up that would be useful. These include event filtering, rate guarantee, rate limit, and value
change.

Event Filtering

There are several cases where a monitor was sent from a channel only when a specific event was true. For instance,
there are diagnostics that are read at 1 kHz. A control program may only want this information when the machine is
producing a particular beam such as a linac that has several injectors and beam lines. These are virtual machines that
want to be notified when the machine is in their mode. These modes can be interleaved at 60 Hz in some cases. A fault
analysis tool may only be interested in all of this data when a fault occurs and the beam is dumped.

There are two efforts here: one at LANL and one from ANL/BNL. These should be discussed in the near future.

Rate Guarantee

Some clients may want to receive a monitor at a given rate. Binary inputs that only notify on change of state may not
post a monitor for a very long time. Some clients may prefer to have a notification at some rate even when the value is
not changing.

Rate Limit

There is a limit to the rate that most clients care to be notified. Currently, only the SCAN period limits this. A user-
imposed limit is needed in some cases such as a data archiver that would only want this channel at 1 Hz (all channels
on the same 1 msec in this case).

1.13. Application Developer’s Guide 167

EPICS Documentation

Value Change

Different clients may have a need to set different deadbands among them. No specific case is cited.

Control Specification

A control loop is a set of database records used to maintain control autonomously. Each output record has two fields
that are help implement this independent control: the desired output location field (DOL) and the output mode select
field (OMSL). The OMSL field has two mode choices: closed_loop or supervisory. When the closed loop mode is
chosen, the desired output is retrieved from the location specified by the DOL field and placed into the VAL field.
When the supervisory mode is chosen, the desired output value is the VAL field. In supervisory mode the DOL link is
not retrieved. In the supervisory mode, VAL is set typically by the operator through a Channel Access “Put”.

Closing an Analog Control Loop

In a simple control loop an analog input record reads the value of a process variable or PV. The operator sets the Setpoint
in the PID record. Then, a PID record retrieves the value from the analog input record and computes the error - the
difference between the readback and the setpoint. The PID record computes the new output setting to move the process
variable toward the setpoint. The analog output record gets the value from the PID through the DOL when the OMSL
is closed_loop. It sets the new output and on the next period repeats this process.

Configuring an Interlock

When certain conditions become true in the process, it may trip an interlock. The result of this interlock is to move
something into a safe state or to mitigate damage by taking some action. One example is the closing of a vacuum valve
to isolate a vacuum loss. When a vacuum reading in one region of a machine is not at the operating range, an interlock
is used to either close a valve and prohibit it from being open. This can be implemented by reading several vacuum
gauges in an area into a calculation record. The expression in the calculation record can express the condition that
permits the valve to open. The result of the expression is then referenced to the DOL field of a binary output record
that controls the valve. If the binary output has the OMSL field set to closed_loop it sets the valve to the value of the
calculation record. If it is set to supervisory, the operator can override the interlock and control the valve directly.

1.13.4 Database Definition

Tags: developer advanced

Overview

This chapter describes database definitions. The following definitions are described:

• Menu

• Record Type

• Device

• Driver

• Registrar

• Variable

• Function

168 Chapter 1. How this documentation is organized

EPICS Documentation

• Breakpoint Table

• Record Instance

Record Instances are fundamentally different from the other definitions. A file containing record instances should never
contain any of the other definitions and vice-versa. Thus the following convention is followed:

Database Definition File
A file that contains any type of definition except record instances.

Record Instance File
A file that contains only record instance definitions.

This chapter also describes utility programs which operate on these definitions.

Any combination of definitions can appear in a single file or in a set of files related to each other via include statements.

Summary of Database Syntax

The following summarizes the Database Definition syntax:

path "path"
addpath "path"
include "filename"
#comment
menu(name) {

include "filename"
choice(choice_name, "choice_value")
...

}

recordtype(record_type) {}

recordtype(record_type) {
include "filename"
field(field_name, field_type) {

asl(asl_level)
initial("init_value")
promptgroup("group_name")
prompt("prompt_value")
special(special_value)
pp(pp_value)
interest(interest_level)
base(base_type)
size(size_value)
extra("extra_info")
menu(name)
prop(yesno)

}
%C_declaration
...

}

device(record_type, link_type, dset_name, "choice_string")

driver(drvet_name)
(continues on next page)

1.13. Application Developer’s Guide 169

EPICS Documentation

(continued from previous page)

registrar(function_name)

variable(variable_name)

breaktable(name) {
raw_value eng_value
...

}

The Following defines a Record Instance

record(record_type, record_name) {
include "filename"
field(field_name, "value")
alias(alias_name)
info(info_name, "value")
...

}
alias(record_name,alias_name)

General Rules for Database Definition

Keywords

The following are keywords, i.e. they may not be used as values unless they are enclosed in quotes:

path
addpath
include
menu
choice
recordtype
field
device
driver
registrar
function
variable
breaktable
record
grecord
info
alias

170 Chapter 1. How this documentation is organized

EPICS Documentation

Unquoted Strings

In the summary section, some values are shown as quoted strings and some unquoted. The actual rule is that any string
consisting of only the following characters does not need to be quoted unless it contains one of the above keywords:

a-z A-Z 0-9 _ + - : . [] < > ;

These are all legal characters for process variable names, although . is not allowed in a record name since it separates
the record from the field name in a PV name. Thus in many cases quotes are not needed around record or field names
in database files. Any string containing a macro does need to be quoted though.

Quoted Strings

A quoted string can contain any ascii character except the quote character ". The quote character itself can given by
using a back-slash (\) as an escape character. For example "\"" is a quoted string containing a single double-quote
character.

Macro Substitution

Macro substitutions are permitted inside quoted strings. Macro instances take the form:

$(name)

or

${name}

There is no distinction between the use of parentheses or braces for delimiters, although the opening and closing
characters must match for each macro instance. A macro name can be constructed using other macros, for example:

$(name_$(sel))

A macro instance can also provide a default value that is used when no macro with the given name has been defined.
The default value can itself be defined in terms of other macros if desired, but may not contain any unescaped comma
characters. The syntax for specifying a default value is as follows:

$(name=default)

Finally macro instances can also set the values of other macros which may (temporarily) override any existing values for
those macros, but the new values are in scope only for the duration of the expansion of this particular macro instance.
These definitions consist of name=value sequences separated by commas, for example:

$(abcd=$(a)(b)(c)$(d),a=A,b=B,c=C,d=D)

1.13. Application Developer’s Guide 171

EPICS Documentation

Escape Sequences

The database routines translate standard C escape sequences inside database field value strings only. The standard C
escape sequences supported are:

\a \b \f \n \r \t \v \\ \' \" \ooo \xhh

\ooo represents an octal number with 1, 2, or 3 digits. \xhh represents a hexadecimal number which may have any
number of hex digits, although only the last 2 will be represented in the character generated.

Comments

The comment symbol is “#”. Whenever the comment symbol appears outside of a quoted string, it and all subsequent
characters through the end of the line will be ignored.

Define before referencing

In general items cannot be referenced until they have been defined. For example a device definition cannot appear
until the recordtype that it references has been defined or at least declared. Another example is that a record instance
cannot appear until its associated record type has been defined.

One notable exception to this rule is that within a recordtype definition a menu field may reference a menu that has
not been included directly by the record’s .dbd file.

Multiple Definitions

If a menu, device, driver, or breakpoint table is defined more than once, then only the first instance will be used.
Subsequent definitions may be compared to the first one and an error reported if they are different (the dbdExpand.pl
program does this, the IOC currently does not). Record type definitions may only be loaded once; duplicates will cause
an error even if the later definitions are identical to the first. However a record type declaration may be used in place
of the record type definition in .dbd files that define device support for that type.

Record instance definitions are (normally) cumulative, so multiple instances of the same record may be loaded and
each time a field value is encountered it replaces the previous value.

Filename Extensions

By convention:

• Record instances files have the extension “.db” or “.vdb” if the file also contains visual layout information

• Database definition files have the extension “.dbd”

172 Chapter 1. How this documentation is organized

EPICS Documentation

Database Definition Statements

path addpath – Path Definition

Format

path "dir:dir...:dir"
addpath "dir:dir...:dir"

The path string follows the standard convention for the operating system, i.e. directory names are separated by a colon
“:” on Unix and a semicolon “;” on Windows.

The path statement specifies the current search path for use when loading database and database definition files. The
addpath statement appends directories to the current path. The path is used to locate the initial database file and
included files. An empty path component at the beginning, middle, or end of a non-empty path string means search the
current directory. For example:

nnn::mmm # Current directory is between nnn and mmm
:nnn # Current directory is first
nnn: # Current directory is last

Utilities which load database files (dbExpand, dbLoadDatabase, etc.) allow the user to specify an initial path. The
path and addpath commands can be used to change or extend that initial path.

The initial path is determined as follows:

1. If path is provided with the command, it is used. Else:

2. If the environment variable EPICS_DB_INCLUDE_PATH is defined, it is used. Else:

3. the path is “.”, i.e. the current directory.

The search path is not used at all if the filename being searched for contains a / or \ character. The first instance of the
specified filename is used.

include – Include Statement

Format

include "filename"

An include statement can appear at any place shown in the summary. It uses the search path as described above to
locate the named file.

menu – Menu Definition

Format

menu(name) {
choice(choice_name, "choice_string")
...

}

1.13. Application Developer’s Guide 173

EPICS Documentation

Definitions

name
Name for menu. This is the unique name identifying the menu. If duplicate definitions are specified, only the
first is used.

choice_name
The name used in the enum generated by dbdToMenuH.pl or dbdToRecordtypeH.pl. This must be a legal
C/C++ identifier.

choice_string
The text string associated with this particular choice.

Example

menu(menuYesNo) {
choice(menuYesNoNO, "NO")
choice(menuYesNoYES, "YES")

}

recordtype – Record Type Definition

Format

recordtype(record_type) {}

recordtype(record_type) {
field(field_name, field_type) {

asl(as_level)
initial("init_value")
promptgroup("group_name")
prompt("prompt_value")
special(special_value)
pp(pp_value)
interest(interest_level)
base(base_type)
size(size_value)
extra("extra_info")
menu(name)
prop(yesno)

}
%C_declaration
...

}

A record type statement that provides no field descriptions is a declaration, analagous to a function declaration (proto-
type) or forward definition in C. It allows the given record type name to be used in circumstances where the full record
type definition is not needed.

174 Chapter 1. How this documentation is organized

EPICS Documentation

Field Descriptor Rules

asl
Sets the Access Security Level for the field. Access Security is discussed in chapter [Access Security].

initial
Provides an initial (default) value for the field.

promptgroup
The group to which the field belongs, for database configuration tools.

prompt
A prompt string for database configuration tools. Optional if promptgroup is not defined.

special
If specified, special processing is required for this field at run time.

pp
Whether a passive record should be processed when Channel Access writes to this field.

interest
Interest level for the field.

base
For integer fields, the number base to use when converting the field value to a string.

size
Must be specified for DBF_STRING fields.

extra
Must be specified for DBF_NOACCESS fields.

menu
Must be specified for DBF_MENU fields. It is the name of the associated menu.

prop
Must be YES or NO (default). Indicates that the field holds Channel Access meta-data.

Definitions

record_type
The unique name of the record type. Duplicate definitions are not allowed and will be rejected.

field_name
The field name, which must be a valid C and C++ identifier. When include files are generated, the field name
is converted to lower case for use as the record structure member name. If the lower-case version of the field
name is a C or C++ keyword, the original name will be used for the structure member name instead. Previous
versions of EPICS required the field name be a maximum of four all upper-case characters, but these restrictions
no longer apply.

field_type
This must be one of the following values:

• DBF_STRING

• DBF_CHAR, DBF_UCHAR

• DBF_SHORT, DBF_USHORT

• DBF_LONG, DBF_ULONG

• DBF_FLOAT, DBF_DOUBLE

1.13. Application Developer’s Guide 175

EPICS Documentation

• DBF_ENUM, DBF_MENU, DBF_DEVICE

• DBF_INLINK, DBF_OUTLINK, DBF_FWDLINK

• DBF_NOACCESS

as_level
This must be one of the following values:

• ASL0

• ASL1 (default value)

Fields which operators normally change are assigned ASL0. Other fields are assigned ASL1. For example, the
VAL field of an analog output record is assigned ASL0 and all other fields ASL1. This is because only the VAL
field should be modified during normal operations.

init_value
A legal value for data type.

prompt_value
A prompt value for database configuration tools.

group_name
A string used by database configuration tools (DCTs) to group related fields together.

A promptgroup should only be set for fields that can sensibly be configured in a record instance file.

The set of group names is no longer fixed. In earlier versions of Base the predefined set of choices beginning
GUI_ were the only group names permitted. Now the group name strings found in the database definition file
are collected and stored in a global list. The strings given for group names must match exactly for fields to be
grouped together.

To support sorting and handling of groups, the names used in Base have the following conventions:

• Names start with a two-digit number followed by a space-dash-space sequence.

• Names are designed to be presented in ascending numerical order.

• The group name (or possibly just the part following the dash) may be displayed by the tool as a title for the
group.

• In many-of-the-same-kind cases (e.g. 21 similar inputs) fields are distributed over multiple groups. Once-
only fields appear in groups numbered in multiples of 5 or 10. The groups with the multiple instances
follow in +1 increments. This allows more sophisticated treatment, e.g. showing the first group open and
the other groups collapsed.

Record types may define their own group names. However, to improve consistency, records should use the
following names from Base where possible. (This set also demonstrates that the group names used in different
record types may share the same number.)

• General fields that are common to all or many record types

• Scanning mechanism, priority and related properties

• Record type specific behavior and processing action

• Links and related properties

• Input links and properties

• Output links and properties

• Conversion between raw and engineering values

• Alarm related properties, severities and thresholds

176 Chapter 1. How this documentation is organized

EPICS Documentation

• Client related configuration, strings, deadbands

• Simulation mode related properties

NOTE: Older versions of Base contained a header file guigroup.h defining a fixed set of group names and their
matching index numbers. That header file has been removed. The static database access library now provides
functions to convert between group index keys and the associated group name strings. See [subsec:Get Field
Prompt] for details.

special_value
Must be one of the following:

• SPC_MOD – Notify record support when modified. The record support special routine will be called
whenever the field is modified by the database access routines.

• SPC_NOMOD – No external modifications allowed. This value disables external writes to the field, so it can
only be set by the record or device support module.

• SPC_DBADDR – Use this if the record support’s cvt_dbaddr routine should be called to adjust the field
description when code outside of the record or device support makes a connection to the field.

The following values are for database common fields. They must not be used for record specific fields:

• SPC_SCAN – Scan related field.

• SPC_ALARMACK – Alarm acknowledgment field.

• SPC_AS – Access security field.

The following values are deprecated, use SPC_MOD instead:

• An integer value greater than 103.

• SPC_RESET – a reset field is being modified.

• SPC_LINCONV – A linear conversion field is being modified.

• SPC_CALC – A calc field is being modified.

pp_value
Should a passive record be processed when Channel Access writes to this field? The allowed values are:

• FALSE (default)

• TRUE

interest_level
An interest level for the dbpr command.

base
For integer type fields, the default base. The legal values are:

• DECIMAL (Default)

• HEX

size_value
The number of characters for a DBF_STRING field.

extra_info
For DBF_NOACCESS fields, this is the C language definition for the field. The definition must end with the field-
name in lower case.

%C_declaration
A percent sign % inside the record body introduces a line of code that is to be included in the generated C header
file.

1.13. Application Developer’s Guide 177

EPICS Documentation

Example

The following is the definition of the event record type:

recordtype(event) {
include "dbCommon.dbd"
field(VAL,DBF_STRING) {

prompt("Event Name To Post")
promptgroup("40 - Input")
special(SPC_MOD)
asl(ASL0)
size(40)

}
field(EPVT, DBF_NOACCESS) {

prompt("Event private")
special(SPC_NOMOD)
interest(4)
extra("EVENTPVT epvt")

}
field(INP,DBF_INLINK) {

prompt("Input Specification")
promptgroup("40 - Input")
interest(1)

}
field(SIOL,DBF_INLINK) {

prompt("Sim Input Specifctn")
promptgroup("90 - Simulate")
interest(1)

}
field(SVAL,DBF_STRING) {

prompt("Simulation Value")
size(40)

}
field(SIML,DBF_INLINK) {

prompt("Sim Mode Location")
promptgroup("90 - Simulate")
interest(1)

}
field(SIMM,DBF_MENU) {

prompt("Simulation Mode")
interest(1)
menu(menuYesNo)

}
field(SIMS,DBF_MENU) {

prompt("Sim mode Alarm Svrty")
promptgroup("90 - Simulate")
interest(2)
menu(menuAlarmSevr)

}
}

178 Chapter 1. How this documentation is organized

EPICS Documentation

device – Device Support Declaration

Format

device(record_type, link_type, dset_name, "choice_string")

Definitions

record_type
Record type. The combination of record_type and choice_string must be unique. If the same combination
appears more than once, only the first definition is used.

link_type
Link type. This must be one of the following:

• CONSTANT

• PV_LINK

• VME_IO

• CAMAC_IO

• AB_IO

• GPIB_IO

• BITBUS_IO

• INST_IO

• BBGPIB_IO

• RF_IO

• VXI_IO

dset_name
The name of the device support entry table for this device support.

choice_string
The DTYP choice string for this device support. A choice_string value may be reused for different record
types, but must be unique for each specific record type.

Examples

device(ai,CONSTANT,devAiSoft,"Soft Channel")
device(ai,VME_IO,devAiXy566Se,"XYCOM-566 SE Scanned")

1.13. Application Developer’s Guide 179

EPICS Documentation

driver – Driver Declaration

Format

driver(drvet_name)

Definitions

drvet_name
If duplicates are defined, only the first is used.

Examples

driver(drvVxi)
driver(drvXy210)

registrar – Registrar Declaration

Format

registrar(function_name)

Definitions

function_name
The name of an C function that accepts no arguments, returns void and has been marked in its source file with
an epicsExportRegistrar declaration, e.g.

static void myRegistrar(void);
epicsExportRegistrar(myRegistrar);

This can be used to register functions for use by subroutine records or that can be invoked from iocsh. The example
application described in Section [Example IOC Application], “Example IOC Application” gives an example of how to
register functions for subroutine records.

Example

registrar(myRegistrar)

180 Chapter 1. How this documentation is organized

EPICS Documentation

variable – Variable Declaration

Format

variable(variable_name[, type])

Definitions

variable_name
The name of a C variable which has been marked in its source file with an epicsExportAddress declaration.

type
The C variable’s type. If not present, int is assumed. Currently only int and double variables are supported.

This registers a diagnostic/configuration variable for device or driver support or a subroutine record subroutine. This
variable can be read and set with the iocsh var command (see Section [Utility Commands]. The example application
described in Section [Example IOC Application] shows how to register a debug variable for use in a subroutine record.

Example

In an application C source file:

#include <epicsExport.h>

static double myParameter;
epicsExportAddress(double, myParameter);

In an application database definition file:

variable(myParameter, double)

function – Function Declaration

Format

function(function_name)

Definitions

function_name
The name of a C function which has been exported from its source file with an epicsRegisterFunction
declaration.

This registers a function so that it can be found in the function registry for use by record types such as sub or aSub
which refer to the function by name. The example application described in Section [Example IOC Application] shows
how to register functions for a subroutine record.

1.13. Application Developer’s Guide 181

EPICS Documentation

Example

In an application C source file:

#include <registryFunction.h>
#include <epicsExport.h>

static long myFunction(void *argp) {
/* my code ... */

}
epicsRegisterFunction(myFunction);

In an application database definition file:

function(myFunction)

breaktable – Breakpoint Table

Format

breaktable(name) {
raw_value eng_value
...

}

Definitions

name
Name, which must be alpha-numeric, of the breakpoint table. If duplicates are specified the first is used.

raw_value
The raw value, i.e. the actual ADC value associated with the beginning of the interval.

eng_value
The engineering value associated with the beginning of the interval.

Example

breaktable(typeJdegC) {
0.000000 0.000000
365.023224 67.000000
1000.046448 178.000000
3007.255859 524.000000
3543.383789 613.000000
4042.988281 692.000000
4101.488281 701.000000

}

182 Chapter 1. How this documentation is organized

EPICS Documentation

record – Record Instance

Format

record(record_type, record_name) {
alias(alias_name)
field(field_name, "field_value")
info(info_name, "info_value")
...

}
alias(record_name, alias_name)

Definitions

record_type
The record type, or "*" (see discussion under record_name below).

record_name
The record name. This must be composed out of only the following characters:

a-z A-Z 0-9 _ - + : [] < > ;

NOTE: If macro substitutions are used the name must be quoted.

Duplicate definitions are normally allowed for a record as long as the record type is the same. The last value
given for each field is the value used. If the duplicate definitions are being used and the record has already been
loaded, subsequent definitions may use "*" in place of the record type in the record instance.

The variable dbRecordsOnceOnly can be set to any non-zero value using the iocsh var command to make
loading duplicate record definitions into the IOC illegal.

alias_name
An alternate name for the record, following the same rules as the record name.

field_name
A field name.

field_value
A value for the named field, appropriate for its particular field type. When given inside double quotes the field
value string may contain escaped characters which will be translated appropriately when loading the database.
See section 1.3.5 for the list of escaped characters supported. Permitted values for the various field types are as
follows:

• DBF_STRING

Any ASCII string. If it exceeds the field length, it will be truncated.

• DBF_CHAR, DBF_UCHAR, DBF_SHORT, DBF_USHORT, DBF_LONG, DBF_ULONG
A string that represents a valid integer. The standard C conventions are applied, i.e. a leading 0 means
the value is given in octal and a leading 0x means that value is given in hex.

• DBF_FLOAT, DBF_DOUBLE
The string must represent a valid floating point number. Infinities or NaN are also allowed.

• DBF_MENU

The string must be one of the valid choices for the associated menu.

• DBF_DEVICE

1.13. Application Developer’s Guide 183

EPICS Documentation

The string must be one of the valid device choice strings.

• DBF_INLINK, DBF_OUTLINK, DBF_FWDLINK
NOTES:

– If the field name is INP or OUT then this field is associated with DTYP, and the permitted values are
determined by the link type of the device support selected by the current DTYP choice string. Other
DBF_INLINK and DBF_OUTLINK fields must be either CONSTANT or PV_LINKs.

– A device support that specifies a link type of CONSTANT can be given either a constant or a PV_LINK.

The allowed values for the field depend on the device support’s link type as follows:

– CONSTANT

A numeric literal, valid for the field type it is to be read into.

– PV_LINK

A value of the form:

record.field process maximize

record is the name of a record that exists in this or another IOC.

The .field, process, and maximize parts are all optional.

The default value for .field is .VAL.

process can have one of the following values:

∗ NPP – No Process Passive (Default)

∗ PP – Process Passive

∗ CA – Force link to be a channel access link

∗ CP – CA and process on monitor

∗ CPP – CA and process on monitor if record is passive

NOTES:

CP and CPP are valid only for DBF_INLINK fields.

DBF_FWDLINK fields can use PP or CA. If a DBF_FWDLINK is a channel access link it must
reference the target record’s PROC field.

maximize can have one of the following values:

∗ NMS – No Maximize Severity (Default)

∗ MS – Maximize Severity

∗ MSS – Maximize Severity and Status

∗ MSI – Maximize Severity if Invalid

– VME_IO

#Ccard Ssignal @parm

card – the card number of associated hardware module
signal – signal on card
parm – An arbitrary character string of up to 31 characters. This field is optional and is device
specific.

184 Chapter 1. How this documentation is organized

EPICS Documentation

– CAMAC_IO

#Bbranch Ccrate Nstation Asubaddress Ffunction @parm

branch, crate, station, subaddress, and function should be obvious to camac users.
subaddress and function are optional (0 if not given). parm is also optional and is device specific
(25 characters max).

– AB_IO

#Llink Aadapter Ccard Ssignal @parm

link – Scanner, i.e. vme scanner number
adapter – Adapter. Allen Bradley also calls this rack
card – Card within Allen Bradley Chassis
signal – signal on card
parm – optional device-specific character string (27 char max)

– GPIB_IO

#Llink Aaddr @parm

link – gpib link, i.e. interface
addr – GPIB address
parm – device-specific character string (31 char max)

– BITBUS_IO

#Llink Nnode Pport Ssignal @parm

link – link, i.e. vme bitbus interface
node – bitbus node
port – port on the node
signal – signal on port
parm – device specific-character string (31 char max)

– INST_IO @parm

parm – Device dependent character string

– BBGPIB_IO

#Llink Bbbaddr Ggpibaddr @parm

link – link, i.e. vme bitbus interface
bbadddr – bitbus address
gpibaddr – gpib address
parm – optional device-specific character string (31 char max)

– RF_IO

1.13. Application Developer’s Guide 185

EPICS Documentation

#Rcryo Mmicro Ddataset Eelement

– VXI_IO

#Vframe Cslot Ssignal @parm (Dynamic addressing)
or
#Vla Signal @parm (Static Addressing)

frame – VXI frame number
slot – Slot within VXI frame
la – Logical Address
signal – Signal Number
parm – device specific character string(25 char max)

info_name
The name of an Information Item related to this record. See section 1.5 below for more on Information Items.

info_value
Any ASCII string. IOC applications using this information item may place additional restrictions on the contents
of the string.

Examples

record(ai,STS_AbAiMaS0) {
field(SCAN,".1 second")
field(DTYP,"AB-1771IFE-4to20MA")
field(INP,"#L0 A2 C0 S0 F0 @")
field(PREC,"4")
field(LINR,"LINEAR")
field(EGUF,"20")
field(EGUL,"4")
field(EGU,"MilliAmps")
field(HOPR,"20")
field(LOPR,"4")

}
record(ao,STS_AbAoMaC1S0) {

field(DTYP,"AB-1771OFE")
field(OUT,"#L0 A2 C1 S0 F0 @")
field(LINR,"LINEAR")
field(EGUF,"20")
field(EGUL,"4")
field(EGU,"MilliAmp")
field(DRVH,"20")
field(DRVL,"4")
field(HOPR,"20")
field(LOPR,"4")
info(autosaveFields,"VAL")

}
record(bi,STS_AbDiA0C0S0) {

field(SCAN,"I/O Intr")
field(DTYP,"AB-Binary Input")

(continues on next page)

186 Chapter 1. How this documentation is organized

EPICS Documentation

(continued from previous page)

field(INP,"#L0 A0 C0 S0 F0 @")
field(ZNAM,"Off")
field(ONAM,"On")

}

Record Information Item

Information items provide a way to attach named string values to individual record instances that are loaded at the same
time as the record definition. They can be attached to any record without having to modify the record type, and can
be retrieved by programs running on the IOC (they are not visible via Channel Access at all). Each item attached to
a single record must have a unique name by which it is addressed, and database access provides routines to allow a
record’s info items to be scanned, searched for, retrieved and set. At runtime a void* pointer can also be associated
with each item, although only the string value can be initialized from the record definition when the database is loaded.

Record Attributes

Each record type can have any number of record attributes. Each attribute is a psuedo field that can be accessed via
database and channel access. Each attribute has a name that acts like a field name but returns the same value for all
instances of the record type. Two attributes are generated automatically for each record type: RTYP and VERS. The
value for RTYP is the record type name. The default value for VERS is “none specified”, which can be changed by
record support. Record support can call the following routine to create new attributes or change existing attributes:

long dbPutAttribute(char *rtype, char *name, char *value);

The arguments are:

rtype – The name of recordtype.

name – The attribute name, i.e. the psuedo field name.

value – The value assigned to the attribute.

Breakpoint Tables – Discussion

The menu menuConvert is used for field LINR of the ai and ao records. These records allow raw data to be converted
to/from engineering units via one of the following:

1. No Conversion.

2. Slope Conversion.

3. Linear Conversion.

4. Breakpoint table.

Other record types can also use this feature. The first choice specifies no conversion; the second and third are both linear
conversions, the difference being that for Slope conversion the user specifies the conversion slope and offset values
directly, whereas for Linear conversions these are calculated by the device support from the requested Engineering
Units range and the device support’s knowledge of the hardware conversion range. The remaining choices are assumed
to be the names of breakpoint tables. If a breakpoint table is chosen, the record support modules calls cvtRawToEngBpt
or cvtEngToRawBpt. You can look at the ai and ao record support modules for details.

If a user wants to add additional breakpoint tables, then the following should be done:

• Copy the menuConvert.dbd file from EPICS base/src/ioc/bpt

1.13. Application Developer’s Guide 187

EPICS Documentation

• Add definitions for new breakpoint tables to the end

• Make sure modified menuConvert.dbd is loaded into the IOC instead of EPICS version.

It is only necessary to load a breakpoint file if a record instance actually chooses it. It should also be mentioned that
the Allen Bradley IXE device support misuses the LINR field. If you use this module, it is very important that you do
not change any of the EPICS supplied definitions in menuConvert.dbd. Just add your definitions at the end.

If a breakpoint table is chosen, then the corresponding breakpoint file must be loaded into the IOC before iocInit is
called.

Normally, it is desirable to directly create the breakpoint tables. However, sometimes it is desirable to create a break-
point table from a table of raw values representing equally spaced engineering units. A good example is the Thermo-
couple tables in the OMEGA Engineering, INC Temperature Measurement Handbook. A tool makeBpt is provided to
convert such data to a breakpoint table.

The format for generating a breakpoint table from a data table of raw values corresponding to equally spaced engineering
values is:

!comment line
<header line>
<data table>

The header line contains the following information:

Name
An alphanumeric ascii string specifying the breakpoint table name

Low Value Eng
Engineering Units Value for first breakpoint table entry

Low Value Raw
Raw value for first breakpoint table entry

High Value Eng
Engineering Units: Highest Value desired

High Value Raw
Raw Value for High Value Eng

Error
Allowed error (Engineering Units)

First Table
Engineering units corresponding to first data table entry

Last Table
Engineering units corresponding to last data table entry

Delta Table
Change in engineering units per data table entry

An example definition is:

"TypeKdegF" 32 0 1832 4095 1.0 -454 2500 1
<data table>

The breakpoint table can be generated by executing

makeBpt bptXXX.data

188 Chapter 1. How this documentation is organized

EPICS Documentation

The input file must have the extension of data. The output filename is the same as the input filename with the extension
of .dbd.

Another way to create the breakpoint table is to include the following definition in a Makefile:

BPTS += bptXXX.dbd

NOTE: This requires the naming convention that all data tables are of the form bpt<name>.data and a breakpoint
table bpt<name>.dbd.

Menu and Record Type Include File Generation.

Introduction

Given a file containing menu definitions, the program dbdToMenuH.pl generates a C/C++ header file for use by code
which needs those menus. Given a file containing any combination of menu definitions and record type definitions,
the program dbdToRecordtypeH.pl generates a C/C++ header file for use by any code which needs those menus and
record type.

EPICS Base uses the following conventions for managing menu and recordtype definitions. Users generating local
record types are encouraged to follow these.

• Each menu that is used by fields in database common (for example menuScan) or is of global use (for example
menuYesNo) should be defined in its own file. The name of the file is the same as the menu name, with an
extension of .dbd. The name of the generated include file is the menu name, with an extension of .h. Thus
menuScan is defined in a file menuScan.dbd and the generated include file is named menuScan.h

• Each record type is defined in its own file. This file should also contain any menu definitions that are used only
by that record type. Menus that are specific to one particular record type should use that record type name as
a prefix to the menu name. The name of the file is the same as the record type, followed by Record.dbd. The
name of the generated include file is the same as the .dbd file but with an extension of .h. Thus the record type
ao is defined in a file aoRecord.dbd and the generated include file is named aoRecord.h. Since aoRecord
has a private menu called aoOIF, the dbd file and the generated include file will have definitions for this menu.
Thus for each record type, there are two source files (xxxRecord.dbd and xxxRecord.c) and one generated
file (xxxRecord.h).

Note that developers don’t normally execute the dbdToMenuH.pl or dbdToRecordtypeH.pl programs manually. If
the proper naming conventions are used, it is only necessary to add definitions to the appropriate Makefile. Consult
the chapter on the EPICS Build Facility for details.

dbdToMenuH.pl

This tool is executed as follows:

dbdToMenuH.pl [-D] [-I dir] [-o menu.h] menu.dbd [menu.h]

It reads in the input file menu.dbd and generates a C/C++ header file containing enumerated type definitions for the
menus found in the input file.

Multiple -I options can be provided to specify directories that must be searched when looking for included files. If no
output filename is specified with the -o menu.h option or as a final command-line parameter, then the output filename
will be constructed from the input filename, replacing .dbd with .h.

The -D option causes the program to output Makefile dependency information for the output file to standard output,
instead of actually performing the functions describe above.

1.13. Application Developer’s Guide 189

EPICS Documentation

For example menuPriority.dbd, which contains the definitions for processing priority contains:

menu(menuPriority) {
choice(menuPriorityLOW,"LOW")
choice(menuPriorityMEDIUM,"MEDIUM")
choice(menuPriorityHIGH,"HIGH")

}

The include file menuPriority.h that is generated contains:

/* menuPriority.h generated from menuPriority.dbd */

#ifndef INC_menuPriority_H
#define INC_menuPriority_H

typedef enum {
menuPriorityLOW /* LOW */,
menuPriorityMEDIUM /* MEDIUM */,
menuPriorityHIGH /* HIGH */,
menuPriority_NUM_CHOICES

} menuPriority;

#endif /* INC_menuPriority_H */

Any code that needs the priority menu values should include this file and make use of these definitions.

dbdToRecordtypeH.pl

This tool is executed as follows:

dbdTorecordtypeH.pl [-D] [-I dir] [-o xRecord.h] xRecord.dbd [xRecord.h]

It reads in the input file xRecord.dhd and generates a C/C++ header file which defines the in-memory structure of
the given record type and provides other associated information for the compiler. If the input file contains any menu
definitions, they will also be converted into enumerated type definitions in the output file.

Multiple -I options can be provided to specify directories that must be searched when looking for included files. If
no output filename is specified with the -o xRecord.h option or as a final command-line parameter then the output
filename will be constructed from the input filename, replacing .dbd with .h.

The -D option causes the program to output Makefile dependency information for the output file to standard output,
instead of actually performing the functions describe above.

For example aoRecord.dbd, which contains the definitions for the analog output record contains:

menu(aoOIF) {
choice(aoOIF_Full,"Full")
choice(aoOIF_Incremental,"Incremental")

}
recordtype(ao) {

include "dbCommon.dbd"
field(VAL,DBF_DOUBLE) {

prompt("Desired Output")
promptgroup("50 - Output")

(continues on next page)

190 Chapter 1. How this documentation is organized

EPICS Documentation

(continued from previous page)

asl(ASL0)
pp(TRUE)

}
field(OVAL,DBF_DOUBLE) {

prompt("Output Value")
}
... many more field definitions

}

The include file aoRecord.h that is generated contains:

/* aoRecord.h generated from aoRecord.dbd */

#ifndef INC_aoRecord_H
#define INC_aoRecord_H

#include "epicsTypes.h"
#include "link.h"
#include "epicsMutex.h"
#include "ellLib.h"
#include "epicsTime.h"

typedef enum {
aoOIF_Full /* Full */,
aoOIF_Incremental /* Incremental */,
aoOIF_NUM_CHOICES

} aoOIF;

typedef struct aoRecord {
char name[61]; /* Record Name */
... define remaining fields from database common
epicsFloat64 val; /* Desired Output */
epicsFloat64 oval; /* Output Value */
... define remaining record specific fields

} aoRecord;

typedef enum {
aoRecordNAME = 0,
aoRecordDESC = 1,
... indices for remaining fields in database common
aoRecordVAL = 43,
aoRecordOVAL = 44,
... indices for remaining record specific fields

} aoFieldIndex;

#ifdef GEN_SIZE_OFFSET

#ifdef __cplusplus
extern "C" {
#endif
#include <epicsExport.h>
static int aoRecordSizeOffset(dbRecordType *prt)

(continues on next page)

1.13. Application Developer’s Guide 191

EPICS Documentation

(continued from previous page)

{
aoRecord *prec = 0;
prt->papFldDes[aoRecordNAME]->size = sizeof(prec->name);
... code to compute size for remaining fields
prt->papFldDes[aoRecordNAME]->offset = (char *)&prec->name - (char *)prec;
... code to compute offset for remaining fields
prt->rec_size = sizeof(*prec);
return 0;

}
epicsExportRegistrar(aoRecordSizeOffset);

#ifdef __cplusplus
}
#endif
#endif /* GEN_SIZE_OFFSET */

#endif /* INC_aoRecord_H */

The analog output record support module and all associated device support modules should include this file. No other
code should use it.

Let’s discuss the various parts of the file:

• The enum generated from the menu definition should be used to provide values for the field associated with that
menu.

• The typedef struct defining the record are used by record support and device support to access the fields in
an analog output record.

• The next enum defines an index number for each field within the record. This is useful for the record support
routines that are passed a pointer to a DBADDR structure. They can have code like the following:

switch (dbGetFieldIndex(pdbAddr)) {
case aoRecordVAL :

...
break;

case aoRecordXXX:
...
break;

default:
...

}

The generated routine aoRecordSizeOffset is executed when the record type gets registered with an IOC. The routine
is compiled with the record type code, and is marked static so it will not be visible outside of that file. The associate
record support source code MUST include the generated header file only after defining the GEN_SIZE_OFFSET macro
like this:

#define GEN_SIZE_OFFSET
#include "aoRecord.h"
#undef GEN_SIZE_OFFSET

This convention ensures that the routine is defined exactly once. The epicsExportRegistrar statement ensures that
the record registration code can find and call the routine.

192 Chapter 1. How this documentation is organized

EPICS Documentation

dbdExpand.pl

dbdExpand.pl [-D] [-I dir] [-S mac=sub] [-o out.dbd] in.dbd ...

This program reads and combines the database definition from all the input files, then writes a single output file con-
taining all information from the input files. The output content differs from the input in that comment lines are removed,
and all defined macros and include files are expanded. Unlike the previous dbExpand program, this program does not
understand database instances and cannot be used with .db or .vdb files.

Multiple -I options can be provided to specify directories that must be searched when looking for included files.
Multiple -S options are allowed for macro substitution, or multiple macros can be specified within a single option. If
no output filename is specified with the -o out.dbd option then the output will go to stdout.

The -D option causes the program to output Makefile dependency information for the output file to standard output,
instead of actually performing the functions describe above.

dbLoadDatabase

dbLoadDatabase(char *dbdfile, char *path, char *substitutions)

This IOC command loads a database file which may contain any of the Database Definitions described in this chapter.
The dbdfile string may contain environment variable macros of the form ${MOTOR} which will be expanded before
the file is opened. Both the path and substitutions parameters can be null or empty, and are usually ommitted.
Note that dbLoadDatabase should only used to load Database Definition (.dbd) files, although it is currently possible
to use it for loading Record Instance (.db) files as well.

As each line of the file is read, the substitutions specified in substitutions are performed. Substitutions are specified
as follows:

"var1=sub1,var2=sub3,..."

Variables are used in the file with the syntax $(var) or ${var}. If the substitution string

"a=1,b=2,c=\"this is a test\""

were used, any variables $(a), $(b), $(c) in the database file would have the appropriate values substituted during
parsing.

dbLoadRecords

dbLoadRecords(char* dbfile, char* substitutions)

This IOC command loads a file containing record instances, record aliases and/or breakpoint tables. The dbfile string
may contain environment variable macros of the form ${MOTOR} which will be expanded before the file is opened. The
substitutions parameter can be null or empty, and is often ommitted. Note that dbLoadRecords should only used
to load Record Instance (.db) files, although it is currently possible to use it for loading Database Definition (.dbd)
files as well.

1.13. Application Developer’s Guide 193

EPICS Documentation

Example

For example, let the file test.db contain:

record(ai, "$(pre)testrec1")
record(ai, "$(pre)testrec2")
record(stringout, "$(pre)testrec3") {

field(VAL, "$(STR)")
field(SCAN, "$(SCAN)")

}

Then issuing the command:

dbLoadRecords("test.db", "pre=TEST,STR=test,SCAN=Passive")

gives the same results as loading:

record(ai, "TESTtestrec1")
record(ai, "TESTtestrec2")
record(stringout, "TESTtestrec3") {

field(VAL, "test")
field(SCAN, "Passive")

}

dbLoadTemplate

dbLoadTemplate(char *subfile, char *substitutions)

This IOC command reads a template substitutions file which provides instructions for loading database instance files
and gives values for the $(xxx) macros they may contain. This command performs those substitutions while loading
the database instances requested.

The subfile parameter gives the name of the template substitution file to be used. The optional substitutions
parameter may contain additional global macro values, which can be overridden by values given within the substitution
file.

The MSI program can be used to expand templates at build-time instead of using this command at run-time; both
understand the same substitution file syntax.

Template File Syntax

The template substitution file syntax is described in the following Extended Backus-Naur Form grammar:

substitution-file ::= (global-defs | template-subs)+

global-defs ::= 'global' '{' variable-defs? '}'

template-subs ::= template-filename '{' subs? '}'
template-filename ::= 'file' file-name
subs ::= pattern-subs | variable-subs

pattern-subs ::= 'pattern' '{' pattern-names? '}' pattern-defs?
(continues on next page)

194 Chapter 1. How this documentation is organized

EPICS Documentation

(continued from previous page)

pattern-names ::= (variable-name ','?)+
pattern-defs ::= (global-defs | ('{' pattern-values? '}'))+
pattern-values ::= (value ','?)+

variable-subs ::= (global-defs | ('{' variable-defs? '}'))+
variable-defs ::= (variable-def ','?)+
variable-def ::= variable-name '=' value

variable-name ::= variable-name-start variable-name-char*
file-name ::= file-name-char+ | double-quoted-str | single-quoted-str
value ::= value-char+ | double-quoted-str | single-quoted-str

double-quoted-str ::= '"' (double-quoted-char | escaped-char)* '"'
single-quoted-str ::= "'" (single-quoted-char | escaped-char)* "'"
double-quoted-char ::= [^"\]
single-quoted-char ::= [^'\]
escaped-char ::= '\' .

value-char ::= [a-zA-Z0-9_+:;./\<>[] | '-' | ']'
variable-name-start ::= [a-zA-Z_]
variable-name-char ::= [a-zA-Z0-9_]
file-name-char ::= [a-zA-Z0-9_+:;./\] | '-'

Note that the current implementation may accept a wider range of characters for the last three definitions than those
listed here, but future releases may restrict the characters to those given above.

Any record instance file names must appear inside quotation marks if the name contains any environment variable
macros of the form ${ENV_VAR_NAME}, which will be expanded before the named file is opened.

Template File Formats

Two different template formats are supported by the syntax rules given above. The format is either:

file name.template {
{ var1=sub1_for_set1, var2=sub2_for_set1, var3=sub3_for_set1, ... }
{ var1=sub1_for_set2, var2=sub2_for_set2, var3=sub3_for_set2, ... }
{ var1=sub1_for_set3, var2=sub2_for_set3, var3=sub3_for_set3, ... }

}

or:

file name.template {
pattern { var1, var2, var3, ... }

{ sub1_for_set1, sub2_for_set1, sub3_for_set1, ... }
{ sub1_for_set2, sub2_for_set2, sub3_for_set2, ... }
{ sub1_for_set3, sub2_for_set3, sub3_for_set3, ... }

}

The first line (file name.template) specifies the record instance input file. The file name may appear inside double
quotation marks; these are required if the name contains any characters that are not in the following set, or if it contains
environment variable macros of the form ${VAR_NAME} which must be expanded to generate the file name:

1.13. Application Developer’s Guide 195

EPICS Documentation

a-z A-Z 0-9 _ + - . / \ : ; [] < >

Each set of definitions enclosed in {} is variable substitution for the input file. The input file has each set applied to it
to produce one composite file with all the completed substitutions in it. Version 1 should be obvious. In version 2, the
variables are listed in the pattern{} line, which must precede the braced substitution lines. The braced substitution
lines contains sets which match up with the pattern{} line.

Example

Two simple template file examples are shown below. The examples specify the same substitutions to perform:
this=sub1 and that=sub2 for a first set, and this=sub3 and that=sub4 for a second set.

file test.template {
{ this=sub1,that=sub2 }
{ this=sub3,that=sub4 }

}

file test.template {
pattern{this,that}
{sub1,sub2}
{sub3,sub4 }

}

Assume that the file test.template contains:

record(ai,"$(this)record") {
field(DESC,"this = $(this)")

}
record(ai,"$(that)record") {

field(DESC,"this = $(that)")
}

Using dbLoadTemplate with either input is the same as defining the records:

record(ai,"sub1record") {
field(DESC,"this = sub1")

}
record(ai,"sub2record") {

field(DESC,"this = sub2")
}

record(ai,"sub3record") {
field(DESC,"this = sub3")

}
record(ai,"sub4record") {

field(DESC,"this = sub4")
}

196 Chapter 1. How this documentation is organized

EPICS Documentation

1.13.5 IOC Initialization

Tags: developer

Table of Contents

• IOC Initialization

– Overview - Environments requiring a main program

– Overview - vxWorks

– Overview - RTEMS

– IOC Initialization

∗ Configure Main Thread

∗ General Purpose Modules

∗ Channel Access Links

∗ Driver Support

∗ Record Support

∗ Device Support

∗ Database Records

∗ Device Support again

∗ Scanning and Access Security

∗ Initial Processing

∗ Channel Access Server

∗ Enable Record Processing

∗ Enable CA Server

– Pausing an IOC

– Changing iocCore fixed limits

∗ callbackSetQueueSize

∗ dbPvdTableSize

∗ scanOnceSetQueueSize

∗ errlogInit or errlogInit2

– initHooks

– Environment Variables

– Initialize Logging

1.13. Application Developer’s Guide 197

EPICS Documentation

Overview - Environments requiring a main program

If a main program is required (most likely on all environments except vxWorks and RTEMS), then initialization is
performed by statements residing in startup scripts which are executed by iocsh. An example main program is:

int main(int argc,char *argv[])
{
if (argc >= 2) {

iocsh(argv[1]);
epicsThreadSleep(.2);

}
iocsh(NULL);
epicsExit(0)
return 0;

}

The first call to iocsh executes commands from the startup script filename which must be passed as an argument to the
program. The second call to iocsh with a NULL argument puts iocsh into interactive mode. This allows the user to
issue the commands described in the chapter on “IOC Test Facilities” as well as some additional commands like help.

The command file passed is usually called the startup script, and contains statements like these:

< envPaths
cd ${TOP}
dbLoadDatabase "dbd/appname.dbd"
appname_registerRecordDeviceDriver pdbbase
dbLoadRecords "db/file.db", "macro=value"
cd ${TOP}/iocBoot/${IOC}
iocInit

The envPaths file is automatically generated in the IOC’s boot directory and defines several environment variables that
are useful later in the startup script. The definitions shown below are always provided; additional entries will be created
for each support module referenced in the application’s configure/RELEASE file:

epicsEnvSet("ARCH","linux-x86")
epicsEnvSet("IOC","iocname")
epicsEnvSet("TOP","/path/to/application")
epicsEnvSet("EPICS_BASE","/path/to/base")

Overview - vxWorks

After vxWorks is loaded at IOC boot time, commands like the following, normally placed in the vxWorks startup script,
are issued to load and initialize the application code:

Many vxWorks board support packages need the following:
#cd <full path to IOC boot directory>
< cdCommands
cd topbin
ld 0,0, "appname.munch"

cd top
dbLoadDatabase "dbd/appname.dbd"
appname_registerRecordDeviceDriver pdbbase

(continues on next page)

198 Chapter 1. How this documentation is organized

EPICS Documentation

(continued from previous page)

dbLoadRecords "db/file.db", "macro=value"

cd startup
iocInit

The cdCommands script is automatically generated in the IOC boot directory and defines several vxWorks global vari-
ables that allow cd commands to various locations, and also sets several environment variables. The definitions shown
below are always provided; additional entries will be created for each support module referenced in the application’s
configure/RELEASE file:

startup = "/path/to/application/iocBoot/iocname"
putenv "ARCH=vxWorks-68040"
putenv "IOC=iocname"
top = "/path/to/application"
putenv "TOP=/path/to/application"
topbin = "/path/to/application/bin/vxWorks-68040"
epics_base = "/path/to/base"
putenv "EPICS_BASE=/path/to/base"
epics_basebin = "/path/to/base/bin/vxWorks-68040"

The ld command in the startup script loads EPICS core, the record, device and driver support the IOC needs, and any
application specific modules that have been linked into it.

dbLoadDatabase loads database definition files describing the record/device/driver support used by the application..

dbLoadRecords loads record instance definitions.

iocInit initializes the various epics components and starts the IOC running.

Overview - RTEMS

RTEMS applications can start up in many different ways depending on the board-support package for a particular
piece of hardware. Systems which use the Cexp package can be treated much like vxWorks. Other systems first read
initialization parameters from non-volatile memory or from a BOOTP/DHCP server. The exact mechanism depends
upon the BSP. TFTP or NFS filesystems are then mounted and the IOC shell is used to read commands from a startup
script. The location of this startup script is specified by a initialization parameter. This script is often similar or identical
to the one used with vxWorks. The RTEMS startup code calls

epicsRtemsInitPreSetBootConfigFromNVRAM(struct rtems_bsdnet_config *);

just before setting the initialization parameters from non-volatile memory, and

epicsRtemsInitPostSetBootConfigFromNVRAM(struct rtems_bsdnet_config *);

just after setting the initialization parameters. An application may provide either or both of these routines to perform
any custom initialization required. These function prototypes and some useful external variable declarations can be
found in the header file epicsRtemsInitHooks.h

1.13. Application Developer’s Guide 199

EPICS Documentation

IOC Initialization

An IOC is normally started with the iocInit command as shown in the startup scripts above, which is actually imple-
mented in two distinct parts. The first part can be run separately as the iocBuild command, which puts the IOC into a
quiescent state without allowing the various internal threads it starts to actually run. From this state the second com-
mand iocRun can be used to bring it online very quickly. A running IOC can be quiesced using the iocPause command,
which freezes all internal operations; at this point the iocRun command can restart it from where it left off, or the IOC
can be shut down (exit the program, or reboot on vxWorks/RTEMS). Most device support and drivers have not yet been
written with the possibility of pausing an IOC in mind though, so this feature may not be safe to use on an IOC which
talks to external devices or software.

IOC initialization using the iocBuild and iocRun commands then consists of the following steps:

Configure Main Thread

Provided the IOC has not already been initialized, initHookAtIocBuild is announced first.

The main thread’s epicsThreadIsOkToBlock flag is set, the message “Starting iocInit” is logged and epicsSignalInstall-
SigHupIgnore called, which on Unix architectures prevents the process from shutting down if it later receives a HUP
signal.

At this point, initHookAtBeginning is announced.

General Purpose Modules

Calls coreRelease which prints a message showing which version of iocCore is being run.

Calls taskwdInit to start the task watchdog. This accepts requests to watch other tasks. It runs periodically and checks
to see if any of the tasks is suspended. If so it issues an error message, and can also invoke callback routines registered
by the task itself or by other software that is interested in the state of the IOC. See “Task Watchdog” for details.

Starts the general purpose callback tasks by calling callbackInit. Three tasks are started at different scheduling priorities.

initHookAfterCallbackInit is announced.

Channel Access Links

Calls dbCaLinkInit. The initializes the module that handles database channel access links, but does not allow its task
to run yet.

initHookAfterCaLinkInit is announced.

Driver Support

initDrvSup locates each device driver entry table and calls the init routine of each driver.

initHookAfterInitDrvSup is announced.

200 Chapter 1. How this documentation is organized

EPICS Documentation

Record Support

initRecSup locates each record support entry table and calls the init routine for each record type.

initHookAfterInitRecSup is announced.

Device Support

initDevSup locates each device support entry table and calls its init routine specifying that this is the initial call.

initHookAfterInitDevSup is announced.

Database Records

initDatabase is called which makes three passes over the database performing the following functions:

1. Initializes the fields RSET, RDES, MLOK, MLIS, PACT and DSET for each record.

Calls record support’s init_record (first pass).

2. Convert each PV_LINK into a DB_LINK or CA_LINK

Calls any extended device support’s add_record routine.

3. Calls record support’s init_record (second pass).

Finally it registers an epicsAtExit routine to shut down the database when the IOC application exits.

Next dbLockInitRecords is called to create the lock sets.

Then dbBkptInit is run to initialize the database debugging module.

initHookAfterInitDatabase is announced.

Device Support again

initDevSup locates each device support entry table and calls its init routine specifying that this is the final call.

initHookAfterFinishDevSup is announced.

Scanning and Access Security

The periodic, event, and I/O event scanners are initialized by calling scanInit, but the scan threads created are not
allowed to process any records yet.

A call to asInit initailizes access security. If this reports failure, the IOC initialization is aborted.

dbProcessNotifyInit initializes support for process notification.

After a short delay to allow settling, initHookAfterScanInit is announced.

1.13. Application Developer’s Guide 201

EPICS Documentation

Initial Processing

initialProcess processes all records that have PINI set to YES.

initHookAfterInitialProcess is announced.

Channel Access Server

The Channel Access server is started by calling rsrv_init, but its tasks are not allowed to run so it does not announce
its presence to the network yet.

initHookAfterCaServerInit is announced.

At this point, the IOC has been fully initialized but is still quiescent. initHookAfterIocBuilt is announced. If started
using iocBuild this command completes here.

Enable Record Processing

If the iocRun command is used to bring the IOC out of its initial quiescent state, it starts here.

initHookAtIocRun is announced.

The routines scanRun and dbCaRun are called in turn to enable their associated tasks and set the global variable
interruptAccept to TRUE (this now happens inside scanRun). Until this is set all I/O interrupts should have been
ignored.

initHookAfterDatabaseRunning is announced. If the iocRun command (or iocInit) is being executed for the first time,
initHookAfterInterruptAccept is announced.

Enable CA Server

The Channel Access server tasks are allowed to run by calling rsrv_run.

initHookAfterCaServerRunning is announced. If the IOC is starting for the first time, initHookAtEnd is announced.

A command completion message is logged, and initHookAfterIocRunning is announced.

Pausing an IOC

The command iocPause brings a running IOC to a quiescent state with all record processing frozen (other than possibly
the completion of asynchronous I/O operations). A paused IOC may be able to be restarted using the iocRun command,
but whether it will fully recover or not can depend on how long it has been quiescent and the status of any device drivers
which have been running. The operations which make up the pause operation are as follows:

1. initHookAtIocPause is announced.

2. The Channel Access Server tasks are paused by calling rsrv_pause

3. initHookAfterCaServerPaused is announced.

4. The routines dbCaPause and scanPause are called to pause their associated tasks and set the global variable
interruptAccept to FALSE.

5. initHookAfterDatabasePaused is announced.

6. After logging a pause message, initHookAfterIocPaused is announced.

202 Chapter 1. How this documentation is organized

EPICS Documentation

Changing iocCore fixed limits

The following commands can be issued after iocCore is loaded to change iocCore fixed limits. The commands should
be given before any dbLoadDatabase commands.

callbackSetQueueSize(size)
dbPvdTableSize(size)
scanOnceSetQueueSize(size)
errlogInit(buffersize)
errlogInit2(buffersize, maxMessageSize)

callbackSetQueueSize

Requests for the general purpose callback tasks are placed in a ring buffer. This command can be used to set the size for
the ring buffers. The default is 2000. A message is issued when a ring buffer overflows. It should rarely be necessary
to override this default. Normally the ring buffer overflow messages appear when a callback task fails.

dbPvdTableSize

Record instance names are stored in a process variable directory, which is a hash table. The default number of hash
entries is 512. dbPvdTableSize can be called to change the size. It must be called before any dbLoad commands and
must be a power of 2 between 256 and 65536. If an IOC contains very large databases (several thousand records) then
a larger hash table size speeds up searches for records.

scanOnceSetQueueSize

scanOnce requests are placed in a ring buffer. This command can be used to set the size for the ring buffer. The default
is 1000. It should rarely be necessary to override this default. Normally the ring buffer overflow messages appear when
the scanOnce task fails.

errlogInit or errlogInit2

These commands can increase (but not decrease) the default buffer and maximum message sizes for the errlog message
queue. The default buffer size is 1280 bytes, the maximum message size defaults to 256 bytes.

initHooks

The inithooks facility allows application functions to be called at various states during ioc initialization. The states are
defined in initHooks.h, which contains the following definitions:

typedef enum {
initHookAtIocBuild = 0, / * Start of iocBuild/iocInit commands */
initHookAtBeginning,
initHookAfterCallbackInit,
initHookAfterCaLinkInit,
initHookAfterInitDrvSup,
initHookAfterInitRecSup,
initHookAfterInitDevSup,

(continues on next page)

1.13. Application Developer’s Guide 203

EPICS Documentation

(continued from previous page)

initHookAfterInitDatabase,
initHookAfterFinishDevSup,
initHookAfterScanInit,
initHookAfterInitialProcess,
initHookAfterCaServerInit,
initHookAfterIocBuilt, / * End of iocBuild command */

initHookAtIocRun, / * Start of iocRun command */
initHookAfterDatabaseRunning,
initHookAfterCaServerRunning,
initHookAfterIocRunning, / * End of iocRun/iocInit commands */

initHookAtIocPause, / * Start of iocPause command */
initHookAfterCaServerPaused,
initHookAfterDatabasePaused,
initHookAfterIocPaused, / * End of iocPause command */

/ * Deprecated states, provided for backwards compatibility.
* These states are announced at the same point they were before,
* but will not be repeated if the IOC gets paused and restarted.
*/
initHookAfterInterruptAccept, / * After initHookAfterDatabaseRunning */
initHookAtEnd, / * Before initHookAfterIocRunning */

}initHookState;

typedef void (*initHookFunction)(initHookState state);
int initHookRegister(initHookFunction func);
const char *initHookName(int state);

Any functions that are registered before iocInit reaches the desired state will be called when it reaches that state. The
initHookName function returns a static string representation of the state passed into it which is intended for printing.
The following skeleton code shows how to use this facility:

static initHookFunction myHookFunction;

int myHookInit(void)
{
return(initHookRegister(myHookFunction));

}

static void myHookFunction(initHookState state)
{
switch(state) {
case initHookAfterInitRecSup:
...
break;

case initHookAfterInterruptAccept:
...
break;

default:
break;

}
(continues on next page)

204 Chapter 1. How this documentation is organized

EPICS Documentation

(continued from previous page)

}

An arbitrary number of functions can be registered.

Environment Variables

Various environment variables are used by iocCore:

EPICS_CA_ADDR_LIST
EPICS_CA_AUTO_ADDR_LIST
EPICS_CA_CONN_TMO
EPICS_CAS_BEACON_PERIOD
EPICS_CA_REPEATER_PORT
EPICS_CA_SERVER_PORT
EPICS_CA_MAX_ARRAY_BYTES
EPICS_TS_NTP_INET
EPICS_IOC_LOG_PORT
EPICS_IOC_LOG_INET

For an explanation of the EPICS_CA_. . . and EPICS_CAS_. . . variables see the EPICS Channel Access Ref-
erence Manual. For an explanation of the EPICS_IOC_LOG_. . . variables see “iocLogClient” (To be added).
EPICS_TS_NTP_INET is used only on vxWorks and RTEMS, where it sets the address of the Network Time Pro-
tocol server. If it is not defined the IOC uses the boot server as its NTP server.

These variables can be set through iocsh via the epicsEnvSet command, or on vxWorks using putenv. For example:

epicsEnvSet("EPICS_CA_CONN_TMO,"10")

All epicsEnvSet commands should be issued after iocCore is loaded and before any dbLoad commands.

The following commands can be issued to iocsh:

epicsPrtEnvParams - This shows just the environment variables used by iocCore.

epicsEnvShow - This shows all environment variables on your system.

Initialize Logging

Initialize the logging system. See the chapter on “IOC Error Logging” for details. The following can be used to direct
the log client to use a specific host log server.

epicsEnvSet("EPICS_IOC_LOG_PORT", "<port>")
epicsEnvSet("EPICS_IOC_LOG_INET", "<inet addr>")

These command must be given immediately after iocCore is loaded.

To start logging you must issue the command:

iocLogInit

1.13. Application Developer’s Guide 205

EPICS Documentation

1.13.6 IOC Access Security

Tags: developer advanced

Table of Contents

• IOC Access Security

– Features

∗ Limitations

∗ Definitions

– Quick Start

∗ Access Security Configuration File

∗ ascheck - Check Syntax of Access Configuration File

∗ IOC Access Security Initialization

– Database Configuration

∗ Access Security Group

∗ Subroutine Record Support

∗ Example:

∗ Summary of Functional Requirements

∗ Additional Requirements

∗ pvAccess (QSRV) Specific Features

Features

Access security protects IOC databases from unauthorized Channel Access or pvAccess Clients. Access security is
based on the following:

Who
User id of the client(Channel Access/pvAccess).

Where
Host id where the user is logged on. This is the host on which the client exists. Thus no attempt is made to see
if a user is local or is remotely logged on to the host.

What
Individual fields of records are protected. Each record has a field containing the Access Security Group (ASG)
to which the record belongs. Each field has an access security level, either ASL0 or ASL1. The security level
is defined in the record definition file (.dbd). Thus the access security level for a field is the same for all record
instances of a record type.

When
Access rules can contain input links and calculations similar to the calculation record.

206 Chapter 1. How this documentation is organized

EPICS Documentation

Limitations

An IOC database can be accessed only via pvAccess, Channel Access or the ioc (or vxWorks) shell. It is assumed
that access to the local IOC console is protected via physical security, and that network access is protected via normal
networking and physical security methods.

No attempt has been made to protect against the sophisticated saboteur. Network and physical security methods must
be used to limit access to the subnet on which the IOCs reside.

Definitions

This document uses the following terms:

ASL
Access Security Level.

ASG
Access Security Group

UAG
User Access Group

HAG
Host Access Group

Quick Start

In order to “turn on” access security for a particular IOC the following must be done:

• Create the access security file.

• IOC databases may have to be modified

– Record instances may have to have values assigned to field ASG. If ASG is null the record is in group
DEFAULT.

– Access security files can be reloaded after iocInit via a subroutine record with asSubInit and asSubProcess
as the associated subroutines. Writing the value 1 to this record will cause a reload.

– The startup script must contain the following command before iocInit.

asSetFilename("/full/path/to/accessSecurityFile")

• The following is an optional command.

asSetSubstitutions("var1=sub1,var2=sub2,...")

The following rules decide if access security is turned on for an IOC:

• If asSetFilename is not executed before iocInit, access security will never be started.

• If asSetFile is given and any error occurs while first initializing access security, then all access to that ioc is
denied.

• If after successfully starting access security, an attempt is made to restart and an error occurs then the previous
access security configuration is maintained.

After an IOC has been booted with access security enabled, the access security rules can be changed by issuing the
asSetFilename, asSetSubstitutions, and asInit. The functions asInitialize, asInitFile, and asInitFP, which are described
below, can also be used.

1.13. Application Developer’s Guide 207

EPICS Documentation

Access Security Configuration File

This section describes the format of a file containing definitions of the user access groups, host access groups, and
access security groups. An IOC creates an access configuration database by reading an access configuration file (the
extension .acf is recommended). Lets first give a simple example and then a complete description of the syntax.

Simple Example

UAG(uag) {user1,user2}
HAG(hag) {host1,host2}
ASG(DEFAULT) {

RULE(1,READ)
RULE(1,WRITE) {

UAG(uag)
HAG(hag)

}
}

These rules provide read access to anyone located anywhere and write access to user1 and user2 if they are located at
host1 or host2.

Syntax Definition

In the following description:

[] surrounds optional elements

| separates alternatives

. . . means that an arbitrary number of definitions may be given.

introduces a comment line

The elements <name>, <user>, <host>, <pvname> and <calculation> can be given as quoted or unquoted strings. The
rules for unquoted strings are the same as for database definitions.

UAG(<name>) [{ <user> [, <user> ...] }]
...
HAG(<name>) [{ <host> [, <host> ...] }]
...
ASG(<name>) [{

[INP<index>(<pvname>)
...]
RULE(<level>,NONE | READ | WRITE [, NOTRAPWRITE | TRAPWRITE]) {

[UAG(<name> [,<name> ...])]
[HAG(<name> [,<name> ...])]
CALC(<calculation>)

}
...

}]
...

208 Chapter 1. How this documentation is organized

EPICS Documentation

Discussion

• UAG: User Access Group. This is a list of user names. The list may be empty. A user name may appear in
more than one UAG. To match, a user name must be identical to the user name read by the CA client library
running on the client machine. For vxWorks clients, the user name is usually taken from the user field of the
boot parameters.

• HAG: Host Access Group. This is a list of host names. It may be empty. The same host name can appear in
multiple HAGs. To match, a host name must match the host name read by the CA client library running on the
client machine; both names are converted to lower case before comparison however. For vxWorks clients, the
host name is usually taken from the target name of the boot parameters.

• ASG: An access security group. The group DEFAULT is a special case. If a member specifies a null group or a
group which has no ASG definition then the member is assigned to the group DEFAULT.

• INP<index>Index must have one of the values A to L. These are just like the INP fields of a calculation record.
It is necessary to define INP fields if a CALC field is defined in any RULE for the ASG.

• RULE This defines access permissions. <level> must be 0 or 1. Permission for a level 1 field implies permission
for level 0 fields. The permissions are NONE, READ, and WRITE. WRITE permission implies READ permis-
sion. The standard EPICS record types have all fields set to level 1 except for VAL, CMD (command), and RES
(reset). An optional argument specifies if writes should be trapped. See the section below on trapping Channel
Access writes for how this is used. If not given the default is NOTRAPWRITE.

– UAG specifies a list of user access groups that can have the access privilege. If UAG is not defined then
all users are allowed.

– HAG specifies a list of host access groups that have the access privilege. If HAG is not defined then all
hosts are allowed.

– CALC is just like the CALC field of a calculation record except that the result must evaluate to TRUE or
FALSE. The rule only applies if the calculation result is TRUE, where the actual test for TRUE is (0.99
< result < 1.01). Anything else is regarded as FALSE and will cause the rule to be ignored. Assignment
statements are not permitted in CALC expressions here.

Each IOC record contains a field ASG, which specifies the name of the ASG to which the record belongs. If this field
is null or specifies a group which is not defined in the access security file then the record is placed in group DEFAULT.

The access privilege for a channel access client is determined as follows:

1. The ASG associated with the record is searched.

2. Each RULE is checked for the following:

1. The field’s level must be less than or equal to the level for this RULE.

2. If UAG is defined, the user must belong to one of the specified UAGs. If UAG is not defined all users are
accepted.

3. If HAG is defined, the user’s host must belong to one one of the HAGs. If HAG is not defined all hosts are
accepted.

4. If CALC is specified, the calculation must yield the value 1, i.e. TRUE. If any of the INP fields associated
with this calculation are in INVALID alarm severity the calculation is considered false. The actual test for
TRUE is .99 <result <1.01.

3. The maximum access allowed by step 2 is the access chosen.

Multiple RULEs can be defined for a given ASG, even RULEs with identical levels and access permissions. The
TRAPWRITE setting used for a client is determined by the first WRITE rule that passes the rule checks.

1.13. Application Developer’s Guide 209

EPICS Documentation

ascheck - Check Syntax of Access Configuration File

After creating or modifying an access configuration file it can be checked for syntax errors by issuing the command:

ascheck -S "xxx=yyy,..." < "filename"

This is a Unix command. It displays errors on stdout. If no errors are detected it prints nothing. Only syntax errors
not logic errors are detected. Thus it is still possible to get your self in trouble. The flag -S means a set of macro
substitutions may appear. This is just like the macro substitutions for dbLoadDatabase.

IOC Access Security Initialization

In order to have access security turned on during IOC initialization the following command must appear in the startup
file before iocInit is called:

asSetFilename("/full/path/to/access/security/file.acf")

If this command is not used then access security will not be started by iocInit. If an error occurs when iocInit calls
asInit than all access to the ioc is disabled, i.e. no channel access client will be able to access the ioc. Note that this
command does not read the file itself, it just saves the argument string for use later on, nor does it save the current
working directory, which is why the use of an absolute path-name for the file is recommended (a path name could
be specified relative to the current directory at the time when iocInit is run, but this is not recommended if the IOC
also loads the subroutine record support as a later reload of the file might happen after the current directory had been
changed).

Access security also supports macro substitution just like dbLoadDatabase. The following command specifies the
desired substitutions:

asSetSubstitutions("var1=sub1,var2=sub2,...")

This command must be issued before iocInit.

After an IOC is initialized the access security database can be changed. The preferred way is via the subroutine record
described in the next section. It can also be changed by issuing the following command to the vxWorks shell:

asInit

It is also possible to reissue asSetFilename and/or asSetSubstitutions before asInit. If any error occurs during asInit the
old access security configuration is maintained. It is NOT permissible to call asInit before iocInit is called.

Restarting access security after ioc initialization is an expensive operation and should not be used as a regular procedure.

Database Configuration

Access Security Group

Each database record has a field ASG which holds a character string. Any database configuration tool can be used to
give a value to this field. If the ASG of a record is not defined or is not equal to a ASG in the configuration file then
the record is placed in DEFAULT.

210 Chapter 1. How this documentation is organized

EPICS Documentation

Subroutine Record Support

Two subroutines, which can be attached to a subroutine record, are available (provided with iocCore):

asSubInit
asSubProcess

NOTE: These subroutines are automatically registered thus do NOT put a registrar definition in your database definition
file.

If a record is created that attaches to these routines, it can be used to force the IOC to load a new access configuration
database. To change the access configuration:

1. Modify the file specified by the last call to asSetFilename so that it contains the new configuration desired.

2. Write a 1 to the subroutine record VAL field. Note that this can be done via channel access.

The following action is taken:

1. When the value is found to be 1, asInit is called and the value set back to 0.

2. The record is treated as an asynchronous record. Completion occurs when the new access configuration has been
initialized or a time-out occurs. If initialization fails the record is placed into alarm with a severity determined
by BRSV.

Record Type Description

Each field of each record type has an associated access security level of ASL0 or ASL1 (default value). Fields which
operators normally change are assigned ASL0, other fields are assigned ASL1. For example, the VAL field of an analog
output record is assigned ASL0 and all other fields ASL1. This is because only the VAL field should be modified during
normal operations.

Example:

Lets design a set of rules for a Linac. Assume the following:

1. Anyone can have read access to all fields at anytime.

2. Linac engineers, located in the injection control or control room, can have write access to most level 0 fields only
if the Linac is not in operational mode.

3. Operators, located in the injection control or control room, can have write access to most level 0 fields anytime.

4. The operations supervisor, linac supervisor, and the application developers can have write access to all fields but
must have some way of not changing something inadvertently.

5. Most records use the above rules but a few (high voltage power supplies, etc.) are placed under tighter control.
These will follow rules 1 and 4 but not 2 or 3.

6. IOC channel access clients always have level 1 write privilege.

Most Linac IOC records will not have the ASG field defined and will thus be placed in ASG DEFAULT. The following
records will have an ASG defined:

• LI:OPSTATE and any other records that need tighter control have ASG=”critical”. One such record could be a
subroutine record used to cause a new access configuration file to be loaded. LI:OPSTATE has the value (0,1) if
the Linac is (not operational, operational).

1.13. Application Developer’s Guide 211

EPICS Documentation

• LI:lev1permit has ASG=”permit”. In order for the opSup, linacSup, or an appDev to have write privilege to
everything this record must be set to the value 1.

The following access configuration satisfies the above rules.

UAG(op) {op1,op2,superguy}
UAG(opSup) {superguy}
UAG(linac) {waw,nassiri,grelick,berg,fuja,gsm}
UAG(linacSup) {gsm}
UAG(appDev) {nda,kko}
HAG(icr) {silver,phebos,gaea}
HAG(cr) {mars,hera,gold}
HAG(ioc) {ioclic1,ioclic2,ioclid1,ioclid2,ioclid3,ioclid4,ioclid5}
ASG(DEFAULT) {

INPA(LI:OPSTATE)
INPB(LI:lev1permit)
RULE(0,WRITE) {

UAG(op)
HAG(icr,cr)
CALC("A=1")

}
RULE(0,WRITE) {

UAG(op,linac,appdev)
HAG(icr,cr)
CALC("A=0")

}
RULE(1,WRITE) {

UAG(opSup,linacSup,appdev)
CALC("B=1")

}
RULE(1,READ)
RULE(1,WRITE) {

HAG(ioc)
}

}
ASG(permit) {

RULE(0,WRITE) {
UAG(opSup,linacSup,appDev)

}
RULE(1,READ)
RULE(1,WRITE) {

HAG(ioc)
}

}
ASG(critical) {

INPB(LI:lev1permit)
RULE(1,WRITE) {

UAG(opSup,linacSup,appdev)
CALC("B=1")

}
RULE(1,READ)
RULE(1,WRITE) {

HAG(ioc)
}

(continues on next page)

212 Chapter 1. How this documentation is organized

EPICS Documentation

(continued from previous page)

}

Summary of Functional Requirements

A brief summary of the Functional Requirements is:

1. Each field of each record type is assigned an access security level.

2. Each record instance is assigned to a unique access security group.

3. Each user is assigned to one or more user access groups.

4. Each node is assigned to a host access group.

5. For each access security group a set of access rules can be defined. Each rule specifies:

1. Access security level

2. READ or READ/WRITE access.

3. An optional list of User Access Groups or * meaning anyone.

4. An optional list of Host Access Groups or * meaning anywhere.

5. Conditions based on values of process variables

Additional Requirements

Performance

Although the functional requirements do not mention it, a fundamental goal is performance. The design provides al-
most no overhead during normal database access and moderate overhead for the following: channel access client/server
connection, ioc initialization, a change in value of a process variable referenced by an access calculation, and dynam-
ically changing a records access control group. Dynamically changing the user access groups, host access groups, or
the rules, however, can be a time consuming operation. This is done, however, by a low priority IOC task and thus does
not impact normal ioc operation.

Generic Implementation

Access security should be implemented as a stand alone system, i.e. it should not be embedded tightly in database or
channel access.

No Access Security within an IOC

No access security is invoked within an IOC . This means that database links and local channel access clients calls are
not subject to access control. Also test routines such as dbgf should not be subject to access control.

1.13. Application Developer’s Guide 213

EPICS Documentation

Defaults

It must be possible to easily define default access rules.

Access Security is Optional

When an IOC is initialized, access security is optional.

pvAccess (QSRV) Specific Features

QSRV will enforce the access control policy loaded by the usual means (cf. asSetFilename()). This policy is applied
to both Single and Group PVs. With Group PVs, restrictions are not defined for the group, but rather for the individual
member records. The same policy will be applied regardless of how a record is accessed (individually, or through a
group).

Policy application differs from CA (RSRV) in several ways:

Client hostname is always the numeric IP address. HAG() entries must either contain numeric IP addresses, or as-
CheckClientIP=1 flag must be set to translate hostnames into IPs on ACF file load (effects CA server as well). This
prevents clients from trivially forging “hostname”. In additional to client usernames, UAG definitions may contained
items beginning with “role/” which are matched against the list of groups of which the client username is a member.
Username to group lookup is done internally to QSRV, and depends on IOC host authentication configuration. Note
that this is still based on the client provided username string.

UAG(special) {
someone, "role/op"

}

The “special” UAG will match CA or PVA clients with the username “someone”. It will also match a PVA client if the
client provided username is a member of the “op” group (supported on POSIX targets and Windows).

1.13.7 IOC Test Facilities

Tags: user developer

Table of Contents

• IOC Test Facilities

– Overview

– Database List, Get, Put

∗ dbl

∗ dbgrep

∗ dbla

∗ dba

∗ dbgf

∗ dbpf

214 Chapter 1. How this documentation is organized

EPICS Documentation

∗ dbpr

∗ dbtr

∗ dbnr

– Breakpoints

∗ dbb

∗ dbd

∗ dbs

∗ dbc

∗ dbp

∗ dbap

∗ dbstat

– Trace Processing

– Error Logging

∗ eltc

∗ errlogInit, errlogInit2

∗ errlog

– Hardware Reports

∗ dbior

∗ dbhcr

– Scan Reports

∗ scanppl

∗ scanpel

∗ scanpiol

– General Time

∗ generalTimeReport

∗ installLastResortEventProvider

∗ NTPTime_Report

∗ NTPTime_Shutdown

∗ ClockTime_Report

∗ ClockTime_Shutdown

– Access Security Commands

∗ asSetSubstitutions

∗ asSetFilename

∗ asInit

∗ asdbdump

1.13. Application Developer’s Guide 215

EPICS Documentation

∗ aspuag

∗ asphag

∗ asprules

∗ aspmem

– Channel Access Reports

∗ casr

∗ dbel

∗ dbcar

∗ ascar

– Interrupt Vectors

∗ veclist

– Miscellaneous

∗ epicsParamShow

∗ epicsEnvShow

∗ coreRelease

– Database System Test Routines

∗ dbtgf

∗ dbtpf

∗ dbtpn

– Record Link Reports

∗ dblsr

∗ dbLockShowLocked

∗ dbcar

∗ dbhcr

– Old Database Access Testing

∗ gft

∗ pft

∗ tpn

– Routines to dump database information

∗ dbDumpPath

∗ dbDumpMenu

∗ dbDumpRecordType

∗ dbDumpField

∗ dbDumpDevice

∗ dbDumpDriver

∗ dbDumpRecord

216 Chapter 1. How this documentation is organized

EPICS Documentation

∗ dbDumpBreaktable

∗ dbPvdDump

Overview

This chapter describes a number of IOC test routines that are of interest to both application developers and system
developers. The routines are available from either iocsh or the vxWorks shell. In both shells the parentheses around
arguments are optional. On vxWorks all character string arguments must be enclosed in double quote characters "" and
all arguments must be separated by commas. For iocsh single or double quotes must be used around string arguments
that contain spaces or commas but are otherwise optional, and arguments may be separated by either commas or spaces.
For example:

dbpf("aiTest","2")
dbpf "aiTest","2"

are both valid with both iocsh and with the vxWorks shell.

dbpf aiTest 2

Is valid for iocsh but not for the vxWorks shell.

Both iosch and vxWorks shells allow output redirection, i.e. the standard output of any command can be redirected to
a file. For example

dbl > dbl.lst

will send the output of the dbl command to the file dbl.lst

If iocsh is being used it provides help for all commands that have been registered. Just type

help

or

help pattern*

Database List, Get, Put

dbl

Database List:

dbl("<record type>","<field list>")

Examples

dbl
dbl("ai")
dbl("*")
dbl("")

1.13. Application Developer’s Guide 217

EPICS Documentation

This command prints the names of records in the run time database. If <record type> is empty (""), "*", or not
specified, all records are listed. If <record type> is specified, then only the names of the records of that type are
listed.

If <field list> is given and not empty then the values of the fields specified are also printed.

dbgrep

List Record Names That Match a Pattern:

dbgrep("<pattern>")

Examples

dbgrep("S0*")
dbgrep("*gpibAi*")

Lists all record names that match a pattern. The pattern can contain any characters that are legal in record names as
well as “*”, which matches 0 or more characters.

dbla

List Record Alias Names with optional pattern:

dbla
dbla("<pattern>")

Lists the names of all aliases (which match the pattern if given) and the records they refer to. Examples:

dbla
dbla "alia*"

dba

Database Address:

dba("<record_name.field_name>")

Example

dba("aitest")
dba("aitest.VAL")

This command calls dbNameToAddr and then prints the value of each field in the dbAddr structure describing the field.
If the field name is not specified then VAL is assumed (the two examples above are equivalent).

218 Chapter 1. How this documentation is organized

EPICS Documentation

dbgf

Get Field:

dbgf("<record_name.field_name>")

Example:

dbgf("aitest")
dbgf("aitest.VAL")

This performs a dbNameToAddr and then a dbGetField. It prints the field type and value. If the field name is not
specified then VAL is assumed (the two examples above are equivalent). Note that dbGetField locks the record lockset,
so dbgf will not work on a record with a stuck lockset; use dbpr instead in this case.

dbpf

Put Field:

dbpf("<record_name.field_name>","<value>")

Example:

dbpf("aitest","5.0")

This command performs a dbNameToAddr followed by a dbPutField and dbgf. If <field_name> is not specified
VAL is assumed.

dbpr

Print Record:

dbpr("<record_name>",<interest level>)

Example

dbpr("aitest",2)

This command prints all fields of the specified record up to and including those with the indicated interest level. Interest
level has one of the following values:

• 0: Fields of interest to an Application developer and that can be changed as a result of record processing.

• 1: Fields of interest to an Application developer and that do not change during record processing.

• 2: Fields of major interest to a System developer.

• 3: Fields of minor interest to a System developer.

• 4: Fields of no interest.

1.13. Application Developer’s Guide 219

EPICS Documentation

dbtr

Test Record:

dbtr("<record_name>")

This calls dbNameToAddr, then dbProcess and finally dbpr (interest level 3). Its purpose is to test record processing.

dbnr

Print number of records:

dbnr(<all_recordtypes>)

This command displays the number of records of each type and the total number of records. If all_record_types is
0 then only record types with record instances are displayed otherwise all record types are displayed.

Breakpoints

A breakpoint facility that allows the user to step through database processing on a per lockset basis. This facility has
been constructed in such a way that the execution of all locksets other than ones with breakpoints will not be interrupted.
This was done by executing the records in the context of a separate task.

The breakpoint facility records all attempts to process records in a lockset containing breakpoints. A record that is
processed through external means, e.g.: a scan task, is called an entrypoint into that lockset. The dbstat command
described below will list all detected entrypoints to a lockset, and at what rate they have been detected.

dbb

Set Breakpoint:

dbb("<record_name>")

Sets a breakpoint in a record. Automatically spawns the bkptCont, or breakpoint continuation task (one per lockset).
Further record execution in this lockset is run within this task’s context. This task will automatically quit if two condi-
tions are met, all breakpoints have been removed from records within the lockset, and all breakpoints within the lockset
have been continued.

dbd

Remove Breakpoint:

dbd("<record_name>")

Removes a breakpoint from a record.

220 Chapter 1. How this documentation is organized

EPICS Documentation

dbs

Single Step:

dbs("<record_name>")

Steps through execution of records within a lockset. If this command is called without an argument, it will automatically
step starting with the last detected breakpoint.

dbc

Continue:

dbc("<record_name>")

Continues execution until another breakpoint is found. This command may also be called without an argument.

dbp

Print Fields Of Suspended Record:

dbp("<record_name>,<interest_level>)

Prints out the fields of the last record whose execution was suspended.

dbap

Auto Print:

dbap("<record_name>")

Toggles the automatic record printing feature. If this feature is enabled for a given record, it will automatically be
printed after the record is processed.

dbstat

Status:

dbstat

Prints out the status of all locksets that are suspended or contain breakpoints. This lists all the records with breakpoints
set, what records have the autoprint feature set (by dbap), and what entrypoints have been detected. It also displays the
vxWorks task ID of the breakpoint continuation task for the lockset. Here is an example output from this call:

LSet: 00009 Stopped at: so#B: 00001 T: 0x23cafac
Entrypoint: so#C: 00001 C/S: 0.1
Breakpoint: so(ap)

LSet: 00008#B: 00001 T: 0x22fee4c
Breakpoint: output

1.13. Application Developer’s Guide 221

EPICS Documentation

The above indicates that two locksets contain breakpoints. One lockset is stopped at record “so.” The other is not
currently stopped, but contains a breakpoint at record “output.” “LSet:” is the lockset number that is being considered.
“#B:” is the number of breakpoints set in records within that lockset. “T:” is the vxWorks task ID of the continuation
task. “C:” is the total number of calls to the entrypoint that have been detected. “C/S:” is the number of those calls
that have been detected per second. (ap) indicates that the autoprint feature has been turned on for record “so.”

Trace Processing

The user should also be aware of the field TPRO, which is present in every database record. If it is set TRUE then a
message is printed each time its record is processed and a message is printed for each record processed as a result of it
being processed.

Error Logging

eltc

Display error log messages on console:

eltc(int noYes)

This determines if error messages are displayed on the IOC console. 0 means no and any other value means yes.

errlogInit, errlogInit2

Initialize error log client buffering

errlogInit(int bufSize)
errlogInit2(int bufSize, int maxMsgSize)

The error log client maintains a circular buffer of messages that are waiting to be sent to the log server. If not set using
one or other of these routines the default value for bufSize is 1280 bytes and for maxMsgSize is 256 bytes.

errlog

Send a message to the log server

errlog("<message>")

This command is provided for use from the ioc shell only. It sends its string argument and a new-line to the log server,
without displaying it on the IOC console. Note that the iocsh will have expanded any environment variable macros in
the string (if it was double-quoted) before passing it to errlog.

222 Chapter 1. How this documentation is organized

EPICS Documentation

Hardware Reports

dbior

I/O Report:

dbior ("<driver_name>",<interest level>)

This command calls the report entry of the indicated driver. If <driver_name> is ““ or *, then a report for all drivers is
generated. The command also calls the report entry of all device support modules. Interest level is one of the following:

• 0: Print a short report for each module.

• 1: Print additional information.

• 2: Print even more info. The user may be prompted for options.

dbhcr

Hardware Configuration Report:

dbhcr()

This command produces a report of all hardware links. To use it on the IOC, issue the command:

dbhcr > report

The report will probably not be in the sort order desired. The Unix command:

sort report > report.sort

should produce the sort order you desire.

Scan Reports

scanppl

Print Periodic Lists:

scanppl(double rate)

This routine prints a list of all records in the periodic scan list of the specified rate. If rate is 0.0 all period lists are
shown.

scanpel

Print Event Lists:

scanpel(int event_number)

This routine prints a list of all records in the event scan list for the specified event nunber. If event_number is 0 all event
scan lists are shown.

1.13. Application Developer’s Guide 223

EPICS Documentation

scanpiol

Print I/O Event Lists:

scanpiol

This routine prints a list of all records in the I/O event scan lists.

General Time

The built-in time providers depend on the IOC’s target architecture, so some of the specific subsystem report commands
listed below are only available on the architectures that use that particular provider.

generalTimeReport

Format:

generalTimeReport(int level)

This routine displays the time providers and their priority levels that have registered with the General Time subsystem
for both current and event times. At level 1 it also shows the current time as obtained from each provider.

installLastResortEventProvider

Format:

installLastResortEventProvider

Installs the optional Last Resort event provider at priority 999, which returns the current time for every event number.

NTPTime_Report

Format:

NTPTime_Report(int level)

Only vxWorks and RTEMS targets use this time provider. The report displays the provider’s synchronization state,
and at interest level 1 it also gives the synchronization interval, when it last synchronized, the nominal and measured
system tick rates, and on vxWorks the NTP server address.

NTPTime_Shutdown

Format:

NTPTime_Shutdown

On vxWorks and RTEMS this command shuts down the NTP time synchronization thread. With the thread shut down,
the driver will no longer act as a current time provider.

224 Chapter 1. How this documentation is organized

EPICS Documentation

ClockTime_Report

Format:

ClockTime_Report(int level)

This time provider is used on several target architectures, registered as the time provider of last resort. On vxWorks and
RTEMS the report displays the synchronization state, when it last synchronized the system time with a higher priority
provider, and the synchronization interval. On workstation operating systems the synchronization task is not started
on the assumption that some other process is taking care of synchronzing the OS clock as appropriate, so the report is
minimal.

ClockTime_Shutdown

Format:

ClockTime_Shutdown

Some sites may prefer to provide their own implementation of a system clock time provider to replace the built-in one.
On vxWorks and RTEMS this command stops the OS Clock synchronization thread, allowing the OS clock to free-run.
The time provider will continue to return the current system time after this command is used however.

Access Security Commands

asSetSubstitutions

Format:

asSetSubstitutions("substitutions")

Specifies macro substitutions used when access security is initialized.

asSetFilename

Format:

asSetFilename("<filename>")

This command defines a new access security file.

asInit

Format:

asInit

This command reinitializes the access security system. It rereads the access security file in order to create the new
access security database. This command is useful either because the asSetFilename command was used to change
the file or because the file itself was modified. Note that it is also possible to reinitialize the access security via a
subroutine record. See the access security document for details.

1.13. Application Developer’s Guide 225

EPICS Documentation

asdbdump

Format:

asdbdump

This provides a complete dump of the access security database.

aspuag

Format:

aspuag("<user access group>")

Print the members of the user access group. If no user access group is specified then the members of all user access
groups are displayed.

asphag

Format:

asphag("<host access group>")

Print the members of the host access group. If no host access group is specified then the members of all host access
groups are displayed.

asprules

Format:

asprules("<access security group>")

Print the rules for the specified access security group or if no group is specified for all groups.

aspmem

Format:

aspmem("<access security group>", <print clients>)

Print the members (records) that belong to the specified access security group, for all groups if no group is specified.
If <print clients> is (0, 1) then Channel Access clients attached to each member (are not, are) shown.

226 Chapter 1. How this documentation is organized

EPICS Documentation

Channel Access Reports

casr

Channel Access Server Report

casr(<level>)

Level can have one of the following values:

0

Prints server’s protocol version level and a one line summary for each client attached. The summary lines contain the
client’s login name, client’s host name, client’s protocol version number, and the number of channel created within the
server by the client.

1

Level one provides all information in level 0 and adds the task id used by the server for each client, the client’s IP
protocol type, the file number used by the server for the client, the number of seconds elapsed since the last request
was received from the client, the number of seconds elapsed since the last response was sent to the client, the number
of unprocessed request bytes from the client, the number of response bytes which have not been flushed to the client,
the client’s IP address, the client’s port number, and the client’s state.

2

Level two provides all information in levels 0 and 1 and adds the number of bytes allocated by each client and a list of
channel names used by each client. Level 2 also provides information about the number of bytes in the server’s free
memory pool, the distribution of entries in the server’s resource hash table, and the list of IP addresses to which the
server is sending beacons. The channel names are shown in the form:

<name>(nrw)

where

n is number of ca_add_events the client has on this channel

r is (-,R) if client (does not, does) have read access to the channel.

w is(-, W) if client (does not, does) have write access to the channel.

dbel

Format:

dbel("<record_name>")

This routine prints the Channel Access event list for the specified record.

1.13. Application Developer’s Guide 227

EPICS Documentation

dbcar

Database to Channel Access Report - See “Record Link Reports”

ascar

Format:

ascar(level)

Prints a report of the channel access links for the INP fields of the access security rules. Level 0 produces a summary
report. Level 1 produces a summary report plus details on any unconnect channels. Level 2 produces the summary
nreport plus a detail report on each channel.

Interrupt Vectors

veclist

Format:

veclist

NOTE: This routine is only available on vxWorks. On PowerPC CPUs it requires BSP support to work, and even then
it cannot display chained interrupts using the same vector.

Print Interrupt Vector List

Miscellaneous

epicsParamShow

Format:

epicsParamShow

or

epicsPrtEnvParams

Print the environment variables that are created with epicsEnvSet. These are defined in <base>/config/CONFIG_ENV
and <base>/config/CONFIG_SITE_ENV or else by user applications calling epicsEnvSet.

228 Chapter 1. How this documentation is organized

EPICS Documentation

epicsEnvShow

Format:

epicsEnvShow("<name>")

Show Environment variables. On vxWorks it shows the variables created via calls to putenv.

coreRelease

Format:

coreRelease

Print release information for iocCore.

Database System Test Routines

These routines are normally only of interest to EPICS system developers NOT to Application Developers.

dbtgf

Test Get Field:

dbtgf("<record_name.field_name>")

Example:

dbtgf("aitest")
dbtgf("aitest.VAL")

This performs a dbNameToAddr and then calls dbGetField with all possible request types and options. It prints the
results of each call. This routine is of most interest to system developers for testing database access.

dbtpf

Test Put Field:

dbtpf("<record_name.field_name>","<value>")

Example:

dbtpf("aitest","5.0")

This command performs a dbNameToAddr, then calls dbPutField, followed by dbgf for each possible request type.
This routine is of interest to system developers for testing database access.

1.13. Application Developer’s Guide 229

EPICS Documentation

dbtpn

Test Process Notify:

dbtpn("<record_name.field_name>")
dbtpn("<record_name.field_name>","<value>")

Example:

dbtpn("aitest")
dbtpn("aitest","5.0")

This command performs a dbProcessNotify request. If a non-null value argument string is provided it issues a
putProcessRequest to the named record; if no value is provided it issues a processGetRequest. This routine is
mainly of interest to system developers for testing database access.

Record Link Reports

dblsr

Lock Set Report:

dblsr(<recordname>,<level>)

This command generates a report showing the lock set to which each record belongs. If recordname is 0, "", or "*"
all records are shown, otherwise only records in the same lock set as recordname are shown.

level can have the following values:

0 - Show lock set information only.

1 - Show each record in the lock set.

2 - Show each record and all database links in the lock set.

dbLockShowLocked

Show locked locksets:

dbLockShowLocked(<level>)

This command generates a report showing all locked locksets, the records they contain, the lockset state and the thread
that currently owns the lockset. The level argument is passed to epicsMutexShow to adjust the information reported
about each locked epicsMutex.

230 Chapter 1. How this documentation is organized

EPICS Documentation

dbcar

Database to channel access report

dbcar(<recordname>,<level>)

This command generates a report showing database channel access links. If recordname is “*“ then information about
all records is shown otherwise only information about the specified record.

level can have the following values:

0 - Show summary information only.

1 - Show summary and each CA link that is not connected.

2 - Show summary and status of each CA link.

dbhcr

Report hardware links. See “Hardware Reports”.

Old Database Access Testing

These routines are of interest to EPICS system developers. They are used to test the old database access interface,
which is still used by Channel Access.

gft

Get Field Test:

gft("<record_name.field_name>")

Example:

gft("aitest")
gft("aitest.VAL")

This performs a db_name_to_addr and then calls db_get_field with all possible request types. It prints the results
of each call. This routine is of interest to system developers for testing database access.

pft

Put Field Test:

pft("<record_name.field_name>","<value>")

Example:

pft("aitest","5.0")

This command performs a db_name_to_addr, db_put_field, db_get_field and prints the result for each possible
request type. This routine is of interest to system developers for testing database access.

1.13. Application Developer’s Guide 231

EPICS Documentation

tpn

Test Process Notify:

tpn("<record_name.field_name>","<value>")

Example:

tpn("aitest","5.0")

This routine tests the dbProcessNotify API when used via the old database access interface. It only supports issuing
a putProcessRequest to the named record.

Routines to dump database information

dbDumpPath

Dump Path:

dbDumpPath(pdbbase)

Example:

dbDumpPath(pdbbase)

The current path for database includes is displayed.

dbDumpMenu

Dump Menu:

dbDumpMenu(pdbbase,"<menu>")

Example:

dbDumpMenu(pdbbase,"menuScan")

If the second argument is 0 then all menus are displayed.

dbDumpRecordType

Dump Record Description:

dbDumpRecordType(pdbbase,"<record type>")

Example:

dbDumpRecordType(pdbbase,"ai")

If the second argument is 0 then all descriptions of all records are displayed.

232 Chapter 1. How this documentation is organized

EPICS Documentation

dbDumpField

Dump Field Description:

dbDumpField(pdbbase,"<record type>","<field name>")

Example:

dbDumpField(pdbbase,"ai","VAL")

If the second argument is 0 then the field descriptions of all records are displayed. If the third argument is 0 then the
description of all fields are displayed.

dbDumpDevice

Dump Device Support:

dbDumpDevice(pdbbase,"<record type>")

Example:

dbDumpDevice(pdbbase,"ai")

If the second argument is 0 then the device support for all record types is displayed.

dbDumpDriver

Dump Driver Support:

dbDumpDriver(pdbbase)

Example:

dbDumpDriver(pdbbase)

dbDumpRecord

Dump Record Instances:

dbDumpRecord(pdbbase,"<record type>",level)

Example:

dbDumpRecords(pdbbase,"ai")

If the second argument is 0 then the record instances for all record types are displayed. The third argument determines
which fields are displayed just like for the command dbpr.

1.13. Application Developer’s Guide 233

EPICS Documentation

dbDumpBreaktable

Dump breakpoint table

dbDumpBreaktable(pdbbase,name)

Example:

dbDumpBreaktable(pdbbase,"typeKdegF")

This command dumps a breakpoint table. If the second argument is 0 all breakpoint tables are dumped.

dbPvdDump

Dump the Process variable Directory:

dbPvdDump(pdbbase,verbose)

Example:

dbPvdDump(pdbbase,0)

This command shows how many records are mapped to each hash table entry of the process variable directory. If
verbose is not 0 then the command also displays the names which hash to each hash table entry.

1.14 How to Add a New Breakpoint Table

Tags: developer advanced

1. Copy menuConvert.dbd from base/dbd to the app’s src directory.

2. In the src directory, create a breakpoint table file <bpname>.dbd. Look at base/dbd/bpt*.dbd for the proper
format.

3. In src/menuConvert.dbd, add a line for your new breakpoint table, using the breaktable name from the first
line of <bpname>.dbd. Look at the existing breakpoint table entries in menuConvert.dbd for the proper format.

4. Two options depending on the monotonicity and base version

• If the breakpoint table is monotonic or epics base is < 3.14.9, add <bpname>.dbd to src/
<appname>Support.dbd:

include <bpname>.dbd

If Makefile is used instead of <appname>Support.dbd, add to src/Makefile:

<appname>_DBD += <bpname>.dbd

• If the breakpoint table is non-monotonic and epics base > 3.14.8, install <bpname>.dbd by itself in src/
Makefile:

DBD += <bpname>.dbd

5. Clean/build src.

234 Chapter 1. How this documentation is organized

EPICS Documentation

6. Use the breaktable name in the record’s LINR field. Make sure that the device support for the record supports
conversion.

7. If the breakpoint table is non-monotonic and epics base > 3.14.8, change st.cmd to set the non-monotonic flag
and load the breakpoint table:

dbBptNotMonotonic=1 (rtems, vxWorks)

or:

var dbBptNotMonotonic 1 (soft)

then:

dbLoadRecords("dbd/<bpname>.dbd")

1.15 EPICS Related Software

Tags: user developer all

This page attempts to list all EPICS-related source code and documentation outside of EPICS Base. If you find a link
is incorrect or missing, please submit an issue or pull-request with a fix on the epics-docs repository. When submitting
a pull-request, be sure to be familiar with our documentation contribution guide.

1.15.1 IOC Support Modules

These support modules are meant to be built into an IOC. See also the epics-modules project on github, there may be
something there that has not yet been placed in this list.

Name Source Code Documentation
alive github.com github.io
Area Detector github.com github.io
asyn github.com github.io
autosave github.com github.io
busy github.com github.io
calc github.com github.io
camac github.com github.io
caputLog github.com github.com
caputRecorder github.com github.io
dac128V github.com github.io
Dante github.com github.io
delaygen github.com github.io
devlib2 github.com github.io
dxp github.com github.io
dxpSITORO github.com github.io
ecmc github.com github.com
ecmccfg github.com github.io
ether_ip github.com github.com
fftw github.com github.com
gtest github.com github.io

continues on next page

1.15. EPICS Related Software 235

https://git.launchpad.net/epics-base
https://github.com/epics-docs/epics-docs/issues/new/choose
https://github.com/epics-docs/epics-docs
https://github.com/epics-modules
https://github.com/epics-modules/alive
https://epics-modules.github.io/alive/
https://github.com/areaDetector
https://areadetector.github.io/master/index.html
https://github.com/epics-modules/asyn
https://epics-modules.github.io/asyn/
https://github.com/epics-modules/autosave
https://epics-modules.github.io/autosave/
https://github.com/epics-modules/busy
https://epics-modules.github.io/busy/
https://github.com/epics-modules/calc
https://epics-modules.github.io/calc/
https://github.com/epics-modules/camac
https://epics-modules.github.io/camac/
https://github.com/epics-modules/caputLog
https://github.com/epics-modules/caPutLog/blob/master/docs/index.rst
https://github.com/epics-modules/caputRecorder
https://epics-modules.github.io/caputRecorder/
https://github.com/epics-modules/dac128V
https://epics-modules.github.io/dac128V/
https://github.com/epics-modules/Dante
https://epics-modules.github.io/Dante/
https://github.com/epics-modules/delaygen
https://epics-modules.github.io/delaygen/
https://github.com/epics-modules/devlib2
https://epics.sourceforge.net/devlib2/
https://github.com/epics-modules/dxp
https://epics-modules.github.io/dxp/
https://github.com/epics-modules/dxpSITORO
https://epics-modules.github.io/dxp/dxpDoc.html
https://github.com/epics-modules/ecmc
https://github.com/epics-modules/ecmc/
https://github.com/paulscherrerinstitute/ecmccfg
https://paulscherrerinstitute.github.io/ecmccfg/manual/
https://github.com/epics-modules/ether_ip
https://github.com/epics-modules/ether_ip/blob/master/Manual.md
https://github.com/ralphlange/fftw
https://github.com/ralphlange/fftw
https://github.com/epics-modules/gtest
https://epics-modules.github.io/gtest/

EPICS Documentation

Table 1 – continued from previous page
Name Source Code Documentation
gtr github.com epics.anl.gov
iocStats github.com slac.stanford.edu
ioczed github.com github.com
ip github.com epics.anl.gov
ip230A github.com millenia.cars.aps.anl.gov
ip330 github.com github.io
ipac github.com epics.anl.gov
ipUnidig github.com github.io
LabJack github.com github.io
love github.com github.io
lua github.com github.io
mca github.com github.io
MCoreUtils github.com github.io
measComp github.com github.io
microEpsilon github.com github.com
modbus github.com github.io
motor github.com github.com
mrfioc2 github.com sourceforge
nds3 github.com github.io
opcua github.com github.com
optics github.com github.io
pcas github.com github.com
pmac github.com github.com
pyDevSup github.com github.io
quadEm github.com github.io
recsync github.com github.io
scaler github.com github.io
sequencer github.com sourceforge
snmp groups.nscl.msu.edu groups.nscl.msu.edu
softGlue github.com github.io
softGlueZynq github.com github.com
sscan github.com github.io
std github.com github.io
Stream Device github.com github.io
symb github.com github.com
SyringePump github.com github.com
tpmac github.com github.com
Transient Recorder github.com github.com
vac github.com github.io
vme github.com github.io
xspress3 github.com github.io
xxx github.com github.io
Yokogawa_DAS github.com github.io

236 Chapter 1. How this documentation is organized

https://github.com/epics-modules/gtr
https://epics.anl.gov/modules/analog/gtr/index.html
https://github.com/epics-modules/iocStats
https://www.slac.stanford.edu/grp/ssrl/spear/epics/site/devIocStats/
https://github.com/epics-modules/ioczed
https://github.com/epics-modules/ioczed/tree/master
https://github.com/epics-modules/ip
https://epics.anl.gov/bcda/synApps/ip/ip.html
https://github.com/epics-modules/ip230A
https://millenia.cars.aps.anl.gov/software/epics/dac128VDoc.html
https://github.com/epics-modules/ip330
https://epics-modules.github.io/ip330/ip330Doc.html
https://github.com/epics-modules/ipac
https://epics.anl.gov/modules/bus/ipac/R2.7/index.html
https://github.com/epics-modules/ipUnidig
https://epics-modules.github.io/ipUnidig/
https://github.com/epics-modules/LabJack
https://epics-modules.github.io/LabJack/
https://github.com/epics-modules/love
https://epics-modules.github.io/love/
https://github.com/epics-modules/lua
https://epics-modules.github.io/lua/
https://github.com/epics-modules/mca
https://epics-modules.github.io/mca/mcaDoc.html
https://github.com/epics-modules/MCoreUtils
https://epics-modules.github.io/MCoreUtils/
https://github.com/epics-modules/measComp
https://epics-modules.github.io/measComp/
https://github.com/epics-modules/microEpsilon
https://github.com/epics-modules/microEpsilon/blob/master/documentation/microEpsilon.md
https://github.com/epics-modules/modbus
https://epics-modules.github.io/modbus/
https://github.com/epics-modules/motor
https://github.com/epics-modules/motor/blob/master/docs/README.md
https://github.com/epics-modules/mrfioc2
https://epics.sourceforge.net/mrfioc2/
https://github.com/Cosylab/nds3
https://cosylab.github.io/nds3/master/html/index.html
https://github.com/epics-modules/opcua
https://github.com/epics-modules/opcua/
https://github.com/epics-modules/optics
https://epics-modules.github.io/optics/
https://github.com/epics-modules/pcas
https://github.com/epics-modules/pcas
https://github.com/dls-controls/pmac
https://github.com/dls-controls/pmac/blob/dls-master/docs/source/index.rst
https://github.com/mdavidsaver/pyDevSup
http://mdavidsaver.github.io/pyDevSup/
https://github.com/epics-modules/quadEm
https://epics-modules.github.io/quadEM/quadEMDoc.html
https://github.com/mdavidsaver/recsync
https://github.com/mdavidsaver/recsync
https://github.com/epics-modules/scaler
https://epics-modules.github.io/scaler/
https://github.com/ISISComputingGroup/EPICS-seq/tree/master
https://epics-sequencer.sourceforge.io/sequencer-2-2/
https://groups.nscl.msu.edu/controls/#snmp
https://groups.nscl.msu.edu/controls/files/devSnmp.html
https://github.com/epics-modules/softGlue
https://epics-modules.github.io/softGlue/
https://github.com/epics-modules/softGlueZynq
https://github.com/epics-modules/softGlueZynq/blob/master/documentation/README.md
https://github.com/epics-modules/sscan
https://epics-modules.github.io/sscan/
https://github.com/epics-modules/std
https://epics-modules.github.io/std/
https://github.com/paulscherrerinstitute/StreamDevice
https://paulscherrerinstitute.github.io/StreamDevice/
https://github.com/epics-modules/symb
https://epics.anl.gov/modules/soft/devSymb.html
https://github.com/epics-modules/SyringePump
https://github.com/epics-modules/SyringePump/tree/main/documentation
https://github.com/epics-modules/tpmac
https://github.com/epics-modules/tpmac/tree/master/documentation
https://github.com/epics-modules/transRecorder
https://github.com/epics-modules/transRecorder
https://github.com/epics-modules/vac
https://epics-modules.github.io/vac/
https://github.com/epics-modules/vme
https://epics-modules.github.io/vme/
https://github.com/epics-modules/xspress3
https://epics-modules.github.io/xspress3/
https://github.com/epics-modules/xxx
https://epics-modules.github.io/xxx/
https://github.com/epics-modules/Yokogawa_DAS
https://epics-modules.github.io/Yokogawa_DAS/

EPICS Documentation

1.15.2 User Interface Tools

Graphical User Interface tools are an integral part of any EPICS installation. Being client tools, there is a variety of
implementations using different programming languages and toolkits. Below is a list of the most commonly known
ones.

Name Description Source
Code

Documentation

CS-Studio (Phoebus) Control System Studio (Java) github.com readthedocs.io
caQtDM A display manager in the spirit of MEDM

(C++, Qt)
github.com github.io

EDM Extensible Display Manager github.com controlssoft-
ware.sns.ornl.gov

EPICS Qt EPICS Qt framework github.com github.io
MEDM Motif editor and display manager github.com epics.anl.gov
Probe Motif channel monitoring program github.com epics.anl.gov
PyDM A Python-based display manager github.com github.io
React Automation
Studio

React-based display manager github.com github.com

Strip Tool Strip-chart plotting tool github.com epics.anl.gov

1.15.3 Central Services

Name Description Source
Code

Documenta-
tion

ALH Alarm Handler (C, Motif) github.com epics.anl.gov
Archiver Applience
(Java)

High performance, scalable process data archiver github.com github.io

BEAST (Java) DEPRECATED Best Ever Alarm System Toolkit
(within CS-Studio)

github.com readthedocs.io

BEAUTY (Java) DEPRECATED PV Archiver (Within CS-Studio) github.com source-
forge.net

BURT Backup and restore tool epics.anl.gov epics.anl.gov
CASR Host-based save/restore github.com epics.anl.gov
CA Gateway PV gateway for channel access github.com epics.anl.gov
CA Watcher

Channel Finder Directory service for EPICS channels github.com github.io
Channel Watcher Channel Watcher replaces the save part of EPICS

save/restore
slac.stanford.eduslac.stanford.edu

MASAR Machine Snapshot, Archive and Restore github.com epics.anl.gov
(pdf)

NameServer Channel Access Name Server github.com epics.anl.gov
PVA Gateway PV Access gateway github.com github.io

1.15. EPICS Related Software 237

https://github.com/ControlSystemStudio/phoebus
https://control-system-studio.readthedocs.io/en/latest/
https://github.com/caqtdm/caqtdm
https://caqtdm.github.io/
https://github.com/gnartohl/edm
https://controlssoftware.sns.ornl.gov/edm/
https://controlssoftware.sns.ornl.gov/edm/
https://github.com/qtepics
https://qtepics.github.io/
https://github.com/epics-extensions/medm
https://controlssoftware.sns.ornl.gov/edm/
https://github.com/epics-extensions/probe
https://epics.anl.gov/extensions/probe/index.php
https://github.com/slaclab/pydm
https://slaclab.github.io/pydm/
https://github.com/React-Automation-Studio/React-Automation-Studio
https://github.com/React-Automation-Studio/React-Automation-Studio
https://github.com/epics-extensions/StripTool
https://epics.anl.gov/extensions/StripTool/index.php
https://github.com/epics-extensions/alh
https://epics.anl.gov/extensions/alh/index.php
https://github.com/slacmshankar/epicsarchiverap
https://slacmshankar.github.io/epicsarchiver_docs/index.html
https://github.com/ControlSystemStudio/cs-studio
https://control-system-studio.readthedocs.io/en/latest/app/alarm/ui/doc/index.html
https://github.com/ControlSystemStudio/cs-studio/wiki/BEAST
https://cs-studio.sourceforge.net/docbook/ch11.html
https://cs-studio.sourceforge.net/docbook/ch11.html
https://epics.anl.gov/extensions/burt/index.php
https://epics.anl.gov/extensions/burt/index.php
https://github.com/epicsdeb/autosave/tree/master
https://epics.anl.gov/extensions/casr/index.php
https://github.com/epics-extensions/ca-gateway
https://epics.anl.gov/extensions/gateway/index.php
https://github.com/ChannelFinder
https://channelfinder.github.io/
https://www.slac.stanford.edu/grp/ssrl/spear/epics/extensions/ChannelWatcher/index.html
https://www.slac.stanford.edu/grp/ssrl/spear/epics/extensions/ChannelWatcher/index.html
https://github.com/epics-base/masarService
https://epics.anl.gov/meetings/2013-10/3%20-%20Other%20Services/4%20-%20MASAR%20Service.pdf
https://epics.anl.gov/meetings/2013-10/3%20-%20Other%20Services/4%20-%20MASAR%20Service.pdf
https://github.com/epics-extensions/ca-nameserver
https://epics.anl.gov/extensions/nameserver/index.php
https://github.com/mdavidsaver/p4p
https://mdavidsaver.github.io/p4p/gw.html

EPICS Documentation

1.15.4 Language Bindings and Interfaces to Other Tools

C/C++

Name Description Source Code Documentation
EPICS Base Has CA/PVA implimentations in releases github.com epics-controls.org
EZCA Eacy CA interface for C programs github.com epics.anl.gov
SCA Simple Channel Access for C programs als.lbl.gov als.lbl.gov

Java

Name Description Source Code Documentation
EPICS Core Java Java implementation bundle github.com github.com
CA Pure Java CA client github.com github.com
JCA Java CA client API github.io javadoc.io
JCAE Java CA Extensions library github.com github.com

LabView

Name Description Source Code Documentation
CA Lab CA client for Labview github.com github.com

Matlab

Name Description Source Code Documentation
LabCA Ca client library for Matlab github.com slac.stanford.edu
Matlab CA (MCA) CA client library for Matlab github.com sns.ornl.gov

Perl

Name Description Source Code Documentation
CAP5 CA for Perl 5 github.com epics.anl.gov
PEZCA A Perl binding to EZCA

238 Chapter 1. How this documentation is organized

https://github.com/epics-base/epics-base
https://epics-controls.org/resources-and-support/base/
https://github.com/epics-extensions/ezca
https://epics.anl.gov/extensions/ezca/index.php
https://controls.als.lbl.gov/epics_collaboration/sca/NET/Readme.htm
https://controls.als.lbl.gov/epics_collaboration/sca/
https://github.com/epics-base/epicsCoreJava
https://github.com/epics-base/epicsCoreJava
https://www.javadoc.io/doc/org.epics/jca/latest/com/cosylab/epics/caj/CAJChannel.html
https://www.javadoc.io/doc/org.epics/jca/latest/com/cosylab/epics/caj/CAJChannel.html
https://github.com/epics-base/jca
https://www.javadoc.io/doc/org.epics/jca/latest/com/cosylab/epics/caj/CAJChannel.html
https://github.com/paulscherrerinstitute/jcae/
https://github.com/paulscherrerinstitute/jcae/
https://github.com/epics-extensions/CALab
https://github.com/epics-extensions/CALab
https://github.com/till-s/epics-labca
https://www.slac.stanford.edu/~strauman/labca/index.html
https://github.com/epics-extensions/matlab_ca
https://controlssoftware.sns.ornl.gov/mca/
https://github.com/epics-base
https://epics.anl.gov/modules/soft/cap5/

EPICS Documentation

Python

Name Description Source
Code

Documenta-
tion

Proto-
col

aioca Asynchronous EPICS Channel Access client for asyncio
and Python

github.com github.io CA

CaChannel CaChannel github.com readthe-
docs.io

CA

caffi Channel Access Foreign Function Interface github.com readthe-
docs.io

CA

caproto Pure-python channel access github.com github.io CA
cothread Designed for cooperative threading (C, Python) github.com readthe-

docs.io
CA

pythonSoft-
IOC

Embed an EPICS IOC in a Python process github.com github.io PVA/CA

p4p Python wrapper around PVA client and server github.com github.io PVA
pvapy Python interface to pvAccess github.com epics.anl.gov PVA/CA
pyepics Python wrapper around libca github.com github.io CA

Other

Name Description Source
Code

Documenta-
tion

IDL CA client libraries and scripts for IDL via EZCA github.com github.com
igor2epics CA client library for WaveMetrics IGOR Pro source-

forge.net
sourceforge.net

NetChannelAc-
cess

CA libraries and Gateway in native C# github.com github.com

Node EPICS CA CA client library for Node.js npmjs.com github.com
Node EPICS UNMAINTAINED EPICS CA for node.js github.com github.com
SDDS ARCHIVED The Self-Describing Data Sets analysis

package
github.com aps.anl.gov

1.15. EPICS Related Software 239

https://github.com/dls-controls/aioca
https://dls-controls.github.io/aioca/master/contents.html
https://github.com/CaChannel/CaChannel
https://cachannel.readthedocs.org
https://cachannel.readthedocs.org
https://github.com/CaChannel/caffi
https://caffi.readthedocs.org
https://caffi.readthedocs.org
https://github.com/caproto/caproto
https://caproto.github.io/caproto/
https://github.com/dls-controls/cothread
https://cothread.readthedocs.io/en/latest/cothread.html
https://cothread.readthedocs.io/en/latest/cothread.html
https://github.com/dls-controls/pythonSoftIOC
https://dls-controls.github.io/pythonSoftIOC
https://github.com/mdavidsaver/p4p
https://mdavidsaver.github.io/p4p/
https://github.com/epics-base/pvaPy
https://epics.anl.gov/extensions/pvaPy/production/index.html
https://github.com/pyepics/pyepics
https://pyepics.github.io/pyepics/
https://github.com/epics-extensions/ezcaIDL
https://github.com/epics-extensions/ezcaIDL
https://sourceforge.net/p/igor2epics/git/ci/master/tree/
https://sourceforge.net/p/igor2epics/git/ci/master/tree/
https://sourceforge.net/p/igor2epics/wiki/Home/
https://github.com/paulscherrerinstitute/NetChannelAccess
https://github.com/paulscherrerinstitute/NetChannelAccess
https://www.npmjs.com/package/node-epics-ca?activeTab=code
https://github.com/wanglin86769/node-epics-ca
https://github.com/RobbieClarken/node-epics
https://github.com/RobbieClarken/node-epics
https://github.com/veprbl/epics-sdds
https://www.aps.anl.gov/Accelerator-Operations-Physics/Software

EPICS Documentation

1.15.5 IOC Database and Module Management Tools

Name Description Source
Code

Documentation

dbVer-
bose

Verbose database filter apics.anl.gov apics.anl.gov

MSI Macro substitution and include tool (in Base from 3.14) github.com epics.anl.gov
E3 ESS EPICS Environment Build System (Not limited to ESS) git-

lab.esss.lu.se
e3.pages.esss.lu.se

EPNix Build, package, deploy IOCs and EPICS-related software using the
Nix package manager

github.com github.io

pyEx-
pander

Python macro processing tool source-
forge.io

sourceforge.io

pymsi Python replacement for MSI

SUMO SUpport MOdule Manager source-
forge.net

sourceforge.io

tdct Visual hierarchical Database Configuration Tool, with configurable
symbols

http://isacwserv.triumf.ca

VDCT Visial Database Configuration Tool for EPICS databases github.com github.com

1.15.6 CA Server Interfaces and Applications

Name Description Source Code Documentation
CAEX Channel Access Examples epics.anl.gov epics.anl.gov
CAPod Channel Access projects for Apple iOS devices sourceforge.net sourceforge.net
PCAS Channel Access Server Library github.com epics.anl.gov
CaSnooper Channel Access Search Request Diagnostic Tool epics.anl.gov epics.anl.gov
caxy CA tunneling over ssh github.com github.io
JCAS Pure Java CA server library sourceforge,net sourceforge.net
Kryten Tool to run commands on PV changes github.com github.com
PCASpy Python bindings for the CA server github.com readthedocs.io

1.15.7 Other Tools and Libraries

Name Description Source Code Documentation
CA Shark Wireshark dissector plugin for EPICS protocols github.com github.com
CMLOG Common Message Logging System jlab.org jlab.org
EPICS GNU
regex

The GNU regex library built with EPICS Make-
files

epics.anl.gov epics.anl.gov

EdlBuild Create EDM screens in Perl scripts isacwserv.triumf.ca isacwserv.triumf.ca
ParseCASW CA beacon anomaly diagnostic tool epics.anl.gov epics.anl.gov
procServ Process Server with Telnet Console github.com github.com
PViewer Python 1D and 2D viewer epics.anl.gov epics.anl.gov
Wireshark CA CA plug-in for Wireshark wireshark.org www-linac.kek.jp

240 Chapter 1. How this documentation is organized

https://epics.anl.gov/extensions/dbVerbose/index.php
https://epics.anl.gov/extensions/dbVerbose/index.php
https://github.com/epics-base
https://epics.anl.gov/extensions/msi/index.php
https://gitlab.esss.lu.se/e3/e3
https://gitlab.esss.lu.se/e3/e3
http://e3.pages.esss.lu.se
https://github.com/epics-extensions/EPNix/
https://epics-extensions.github.io/EPNix/
https://pyexpander.sourceforge.io/index.html
https://pyexpander.sourceforge.io/index.html
https://sourceforge.net/p/pyexpander/code/ci/default/tree/
https://sourceforge.net/p/epics-sumo/mercurial/ci/default/tree/
https://sourceforge.net/p/epics-sumo/mercurial/ci/default/tree/
https://epics-sumo.sourceforge.io/
http://isacwserv.triumf.ca/epics/tdct/
https://github.com/epics-extensions/VisualDCT
https://github.com/epics-extensions/VisualDCT
https://epics.anl.gov/extensions/caex/index.php
https://epics.anl.gov/extensions/caex/index.php
https://sourceforge.net/projects/capod/
https://sourceforge.net/projects/capod/
https://github.com/epics-modules/pcas
https://github.com/epics-modules/pcas
https://epics.anl.gov/extensions/caSnooper/index.php
https://epics.anl.gov/extensions/caSnooper/index.php
https://github.com/till-s/caxy
https://till-s.github.io/caxy/
https://sourceforge.net/projects/epics-jca/
https://epics-jca.sourceforge.net/
https://github.com/andrewstarritt/kryten
https://github.com/andrewstarritt/kryten/tree/master/documentation
https://github.com/paulscherrerinstitute/pcaspy
https://pcaspy.readthedocs.io/en/latest/
https://github.com/mdavidsaver/cashark/tree/master
https://github.com/mdavidsaver/cashark/tree/master
https://www.jlab.org/cdev/cmlog.html
https://www.jlab.org/cdev/cmlog.html
https://epics.anl.gov/extensions/gnuregex/index.php
https://epics.anl.gov/extensions/gnuregex/index.php
http://isacwserv.triumf.ca/epics/edlbuild/TRIUMFedlbuild.html#Installation
http://isacwserv.triumf.ca/epics/edlbuild/TRIUMFedlbuild.html
https://epics.anl.gov/extensions/ParseCASW/index.php
https://epics.anl.gov/extensions/ParseCASW/index.php
https://github.com/ralphlange/procServ
https://github.com/ralphlange/procServ
https://epics.anl.gov/bcda/dataVis/pviewer.html
https://epics.anl.gov/bcda/dataVis/pviewer.html
https://www.wireshark.org/download/
http://www-linac.kek.jp/cont/epics/wireshark/

EPICS Documentation

1.15.8 (High Level) Application Packages

Name Description Source Code Documenta-
tion

OpenXAL Accelerator physics application framework (Java) github.com github.io
Matlab Middle Layer Accelerator Physics Toolbox github.com github.com
React Automation Studio Web-based EPICS interface github.com github.com

1.16 How To Port EPICS to a new OS/Architecture

`{tags} user `

This isn’t a detailed list of tasks, but is intended to show the main stages needed to add a new build architecture to
EPICS. If you make use of this and find there are hints you’d like to suggest, or steps missing please add them.

• Download a tarfile for the latest release of EPICS Base, or the snapshot from the R3.14 branch (not the trunk),
and unpack it.

• If you’re not already familiar with EPICS, at least skim chapter 4 of the IOC Application Developers Guide (here-
after known as the AppDevGuide; our build system is different to the usual “./configure && make” approach.

• Build your <base> on a linux-x86 or solaris-sparc system so you know what a fully built system actually looks
and acts like. You can build multiple architectures simultaneously in the same tree, which makes for easier
comparisons. On linux the build instructions should be as simple as

export EPICS_HOST_ARCH=linux-x86
cd <base>
make

• On the new system system, setenv EPICS_HOST_ARCH to the name for your new architecture, which usually
takes the form <osname>-<cpufamily>, for example solaris-sparc, linux-x86, windows-x86

• In the <base>/configure/os directory, create these files by copying and editing the files from an existing architec-
ture:

CONFIG.Common.<arch>
CONFIG.<arch>.Common
CONFIG_SITE.<arch>.Common

• I would suggest looking at the darwin-ppc or linux-x86 versions to start with; for a Unix-like OS you should be
able to make use of the UnixCommon and/or GnuCommon files to provide most of the definitions and rules.

• If you have to cross-compile then there’s more work you have to do and these instructions are probably not
sufficient to get you there.

1.16. How To Port EPICS to a new OS/Architecture 241

https://github.com/openxal
https://openxal.github.io/
https://github.com/atcollab/MML
https://github.com/atcollab/MML
https://github.com/React-Automation-Studio/React-Automation-Studio
https://github.com/React-Automation-Studio/React-Automation-Studio

EPICS Documentation

1.17 PV Access repositories overview

1.18 EPICS V4 Normative Types

Tags: developer advanced

1.18.1 EPICS V4 Normative Types, Editors Draft, 16-Mar-2015

Editors:
Greg White, SLAC Bob Dalesio, BNL Mark Rivers, APS (Invited Expert) Marty Kraimer, BNL David Hickin,
Diamond Light Source

1.18.2 Abstract

This document defines a set of standard high-level data types to aid interoperability of peers at the application level of
an EPICS V4 network.

The abstract type definition and function of each such standard type is described. For instance, one such type defined
here, named “NTTable”, defines a structure for expressing (in pvData) and communicating (using pvAccess) a table of
numeric or string data.

The data types described here are approximately equivalent to EPICS V3 Database Request types (commonly known as
“DBR” types), although Normative Types extend the concept to structured data and operate at a higher level in a complex
control system, or data exchange, than DBR types. Also, Normative Types may be used purely for data exchange though
the dynamic data exchange interfaces offered by EPICS pvAccess and pvData modules, such as pvDatabase or pvAccess
RPC servers.

For more information about EPICS, please refer to the home page of the Experimental Physics and Industrial Control
System.

1.18.3 Status of this Document

This revision of the Normative Types document is a minor modification to the 16 Mar 2015 version. This revision adds
minor clarifications to the description of NTTable.

The 16 Mar 2015 version updates the definitions of time_t, control_t, display_t, and alarmLimit_t and changes the
order of optional fields in a number of Normative Types. It replaces NTImage with NTNDArray, adds NTAttribute,
NTMultiChannel, NTUnion and NTScalarMultiChannel and removes NTVariantArray and a number of types proposed
in earlier drafts.

This version contains a number of types which use pvData unions.

It describes the new conventions for Normative Type IDs including versioning and namespaces. Type IDs for Normative
Type structure fields are given.

The linguistic conventions used in the document have been overhauled.

See Appendix A for items that may be added to future revisions of this specification.

This version is an Editors Draft towards the First Public Working Draft. The First Public Working Draft will be in-
tended for the EPICS community to review and comment. Resulting comments will drive subsequent revisions of the
Normative Types specification and the EPICS V4 Working Group’s reference implementations of software that helps
create, populate and exchange Normative Type pvData.

242 Chapter 1. How this documentation is organized

http://epics-pvdata.sourceforge.net/literature.html#pvDataJava
http://epics-pvdata.sourceforge.net/literature.html#pvAccessJava
http://epics-controls.org
http://epics-controls.org
http://epics-pvdata.sourceforge.net/alpha/normativeTypes/normativeTypes_20150316.html

EPICS Documentation

Comments are welcome, though bear in mind this is a pre-public release version.

The terms MUST, MUST NOT, SHOULD, SHOULD NOT, REQUIRED, and MAY when highlighted (through style
sheets, and in uppercase in the source) are used in accordance with RFC 2119 [RFC2119]. The term NOT REQUIRED
(not defined in RFC 2119) indicates exemption.

1.18.4 Table of Contents

Introduction

Description of Normative Types

1. Linguistic conventions used in this document

Normative Type Fields

1. Simple Normative Type fields - scalar and scalar array types

2. Structured Normative Type fields

3. Union Normative Type fields

Normative Type Metadata

1. Normative Type instance self-identification

2. Standard optional metadata fields

General Normative Types

1. NTScalar

2. NTScalarArray

3. NTEnum

4. NTMatrix

5. NTURI

6. NTNameValue

7. NTTable

8. NTAttribute

Specific Normative Types

1. NTMultiChannel

2. NTNDArray

3. NTContinuum

4. NTHistogram

5. NTAggregate

Appendix A: Possible Future Additions to this Specification

1. NTUnion

2. NTScalarMultiChannel

Appendix B: Normative Type Identifiers

Bibliography

1.18. EPICS V4 Normative Types 243

EPICS Documentation

1.18.5 Introduction

The Normative Types described in this document are a set of software designs for high-level composite data types
suitable for the application-level data exchange between EPICS network endpoints using the pvAccess protocol. In
particular, they are intended for use in online scientific data services. The intention is that where the endpoints in an
EPICS network use only Normative Types, each peer in the network should be able to understand all the data transmitted
to it, at least syntactically, and be able to take processing steps appropriate to that data.

We call these types the Normative Types, to emphasize their role as the prescriptions of abstract data structures, whose
role and intended semantics are described in this document, as opposed to implemented software; and that conformance
to these semantics is a necessary condition for interoperability of using systems.

The EPICS (7) module pvData bib:pvdata supplies a typing mechanism and object management API for efficiently
defining, creating, accessing and updating memory resident structured data. EPICS module pvAccess bib:pvaccess
supports the efficient exchange of pvData defined data between EPICS V4 network peers. The EPICS V4 Normative
Types specification defines some general purpose data types that build on pvData. These are designed to be generally
applicable to the process control, and the software applications level, of scientific instruments.

A simple example of a Normative Type described in this document is the one for exchanging any single scalar value,
such as one floating point number, one integer or one string. That Normative Type is named “NTScalar”. When a
client receives a pvData datum which identifies itself as being of type NTScalar, the client will know to expect that
the structure which carries the NTScalar will include the scalar value in question (along with its type), and that value
may be accompanied by up to 5 additional fields: a description of the quality in question, a timestamp, an indication of
alarm severity, fields that help in how to display the value, and data about its operating limits. See the example below.

An example of a simple Normative Type is the NTScalar:

NTScalar :=

structure
scalar_t value
string descriptor :opt
alarm_t alarm :opt
time_t timeStamp :opt
display_t display :opt
control_t control :opt

A more complex example: If a client receives a pvData datum which identifies itself as being of type NTTable, this
document specifies that it should expect the datum to contain 0 or more arrays of potentially different types. The
description of NTTable in this document will say that the client should interpret the arrays as the columns of a table,
and should render such a datum appropriately as a table, with row elements being taken from the same numbered
elements of each array.

NTTable :=

structure
string[] labels // The field names of each field in value
structure value

{scalar_t[] colname}0+ // 0 or more scalar array type
// instances, the column values.

string descriptor : opt
alarm_t alarm : opt
time_t timeStamp : opt

244 Chapter 1. How this documentation is organized

http://en.wikipedia.org/wiki/Data_type#Composite_types
http://en.wikipedia.org/wiki/Normative#Standards_documents
https://github.com/epics-base/pvDataCPP
https://github.com/epics-base/pvAccessCPP

EPICS Documentation

1.18.6 Description of Normative Types

All the EPICS V4 Normative Types are defined as particular structure instance definitions of a pvData structure. This
is true even of the Normative Types describing simple values like a single int, since all Normative Types optionally
include descriptor, alarm and timestamp. The fields of any given Ntype datum instance can be ascertained at runtime
using the pvData Field introspection interface bib:pvdata.

See the Normative Type instance self-identification section below for more on how to examine a given pvData instance
to see which fields it includes. That section also includes how to mark a pvData instance as a Normative Type, and how
to look for that mark.

Definition: Normative Type

The Normative Types definitions in this document each have the following general form:

1. They are defined as structures, composed of fields.

2. They usually have one primary field called “value”, which encodes the most important data of the type.

3. They are composed of required fields, and optional fields. The required fields come first, the optional fields
follow.

4. The order of fields matters. Although the Normative Types pvData binding allows for access though an intro-
spection API, senders must encode the fields in the order described in this document.

Linguistic conventions used in this document

A Normative Type can be used both for sending data from client to service and from service to client. In this document
we refer generally to an agent, being either a client or a server. If the agent is specifically at the user’s end, we call it
the user agent. Client and server refer to the directionality of the transaction, server being the agent that is doing the
sending.

The word “Ntype” is used as a short form of “Normative Type”.

The Normative Type data descriptions are given with the syntactic conventions and grammar given below. The types
are described in a BNF-like syntax in order to add clear distinctions between symbol types, particularly terminality,
recurrence, which names a user is expected to add and which are predefined. This syntax is essentially Extended
Backus-Naur Form (EBNF), with some slight modifications to preserve the order of terms and the rules for line ends
and indentation.

The syntactic conventions are as follows.

First, the conventions for terminal and non-terminal types are:

• italics - a non-terminal. These are used to stand for a choice of pvData type, or named sequence of fields, or for
a specific structure or union, and hence non-terminal.

• plaintext - terminals. These will be either a pvData Meta Language keyword or a label. The Meta lan-
guage keywords consist of structure, union, any, the scalar type keywords (boolean, byte, short, int,
long, double, ubyte, ushort, uint, ulong, float, double and string) and the corresponding arrays
structure[], union[], any[], and scalar arrays (e.g. int[], double[]]).

• <name> - A user-provided label name.A programmer using the Normative Type will choose what goes in the <>.

So, for example, scalar_t is non-terminal as it stands for a choice of pvData type and time_t is non-terminal because
it stands for a particular structure. On the other hand, in the definition of time_t, long and secondsPastEpoch are
a keyword and a label respectively, and so are terminal, and the columns of NTTable, <colname>, are user-provided
labels.

In this section <> will also be used for describing patterns of definitions or meta rules such as production rules of the
grammar to indicate a choice of terminal or non-terminal terms in the pattern or rule.

1.18. EPICS V4 Normative Types 245

http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#metalang_structure
http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#introspection_interfaces
http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#introspection_interfaces
http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#introspection_interfaces

EPICS Documentation

The EBNF-like syntax for definitions is used. A description consists of 3 terms - a left-hand side (LHS), a right-hand
side (RHS), and the symbol “:=” separating them, which is to be interpreted as “LHS is defined as RHS”. The LHS
will be the non-terminal being defined. The RHS will be a sequence of terminal or non-terminal terms.

Note that in the definitions below line-ends (EOLs) are not explicitly specified. They are implied except when multiple
lines are used to specify alternatives separated by |, where only the final EOL is implied.

The following EBNF symbols are also used:

• | - used to separate alternative items; one item is chosen from this list of alternatives.

• [] - optional items are enclosed between square brackets [and]; the item can either be included or discarded.
Note, optional fields of structures are marked as such by the use of :opt instead of square brackets.

• { } - a sequence of occurrences of the item or items in the braces. The number of occurrences follows. 0+ means
0 or more. 1+ means 1 or more.

The following production rules are employed:

1. Replace a non-terminal by its definition, except where the non-terminal defines a structure or union and is fol-
lowed by a field name. (The modified rule for non-terminal structures and unions is described below.)

2. Choose an alternative for items separated by |.

3. Choose a user supplied label for items between angle brackets (< and >).

4. Include or discard items between square brackets ([and]). Note this excludes a pair of square brackets ([]) used
to signify an array.

5. Include or discard fields marked :opt.

6. For items between braces ({ and }) replace with an appropriate number of occurrences of the item. For a sequence
of pvData fields a line-end (EOL) is implied after each one.

In the case of structure and union fields, to preserve the order of terms in the pvData Meta language, as well as obtain-
ing appropriate indentation, the usual EBNF rule of replacing a non-terminal by its definition requires the following
modification:

Suppose a non-terminal term has a definition of the form

<non-terminal>:=

structure
fieldList

where:

<non-terminal>
The non-terminal term being defined.

<fieldName>

A choice of terminal or non-terminal terms describing a list of 0 or more pvData fields.

Then for a label (a field name), <fieldName>, the terms

<non-terminal> <fieldName>

are replaced by

structure <fieldName>
<fieldList>

246 Chapter 1. How this documentation is organized

EPICS Documentation

The result of the any substitution is suitably indented to preserve the logic of the pvData meta language.

Thus the structure derived from the definition of NTEnum below, with all optional fields present, is

structure
structure value

int index
string[] choices

string descriptor
structure timeStamp

long secondsPastEpoch
int nanoseconds
int userTag

structure alarm
int severity
int status
string message

The same rule also applies with union in place of structure.

The grammar for a Normative Type definition follows the pattern below. That is, a Normative Type is defined as a
structure composed of fields. A field may be optional, and may be described along with a comment:

<NormativeType>:=

structure
{ <pvDataField> [:opt] [// <commentText>] }1+

where:

<NormativeType>
The name of the Normative Type being defined.

<pvDataField>
A choice of terms defining a pvData field

:opt
Indicates that the preceding field is optional in the Normative Type.

// <commentText>
A field production element may be followed by a comment.

In most cases a Normative Type definition will be of the form

<NTname>:=

structure
{ ntfieldChoice fieldName [:opt] [// commentText] }1+

where:

<ntFieldChoice>
Terminal or non-terminal terms, possibly separated by |, from the valid Normative Type Fields as defined below.

<fieldName>
The identifier of the field. Usually a terminal label.

For example, a definition meeting this pattern would be

1.18. EPICS V4 Normative Types 247

EPICS Documentation

NTExample :=

structure
enum_t | scalar_t value
int N // this field has a comment
string descriptor :opt
alarm_t alarm :opt
time_t timeStamp :opt

1.18.7 Normative Type Fields

This section defines the fields that may appear in a Normative Type’s definition.

Each field of a Normative Type will typically be one of the following:

ntfield :=

scalar_t // a simple numerical, boolean, or string value
| scalar_t[] // an array of simple values
| enum_t // an enumeration
| enum_t[] // an array of enumerations
| time_t // a point in time, used for timestamps
| time_t[] // an array of points in time
| alarm_t // a summary diagnostic of a control system event
| alarm_t[] // an array of summary diagnostics
| alarmLimit_t // value thresholds for a control system diagnostic report
| alarmLimit_t[] // an array of threshold values
| display_t // metadata of displayed data
| display_t[] // an array of display metadata
| control_t // control setpoint range boundaries
| control_t[] // an array of control setpoint range boundaries
| any // a variant union type
| any[] // an array of variant unions fields
| ntunion_t // a regular union storing ntfields only
| ntunion_t[] // a regular union array storing ntfields only
| union_t // any regular union
| union_t[] // any regular union array
| anyunion_t // any variant or regular union
| anyunion_t[] // any variant or regular union array

although some examples may have fields of other types.

Simple Normative Type fields - scalar and scalar array types

Note that of all the Normative Type fields only scalar_t and scalar_t[] are of simple type, that is, having a single scalar
or scalar array value of a fixed type. All the others are represented by a complex type, i.e. a structure or union or arrays
of structures or unions (see Structured Normative Type fields and Union Normative Type fields below).

248 Chapter 1. How this documentation is organized

EPICS Documentation

scalar_t

The field is a scalar value. Scalar fields would be implemented with pvData field Type “scalar”:

scalar_t :=

boolean // true or false
| byte // 8 bit signed integer
| ubyte // 8 bit unsigned integer
| short // 16 bit signed integer
| ushort // 16 bit unsigned integer
| int // 32 bit signed integer
| uint // 32 bit unsigned integer
| long // 64 bit signed integer
| ulong // 64 bit unsigned integer
| float // single precision IEEE 754
| double // double precision IEEE 754
| string // UTF-8 *

scalar_t[]

The field is an array of scalars. Scalar array fields would be implemented with a pvData field of type “scalarArray”:

scalar_t[] :=

boolean[] // array of true or false
| byte[] // array of 8 bit signed integer
| ubyte[] // array of 8 bit unsigned integer
| short[] // array of 16 bit signed integer
| ushort[] // array of 16 bit unsigned integer
| int[] // array of 32 bit signed integer
| uint[] // array of 32 bit unsigned integer
| long[] // array of 64 bit signed integer
| ulong[] // array of 64 bit unsigned integer
| float[] // array of single precision IEEE 754
| double[] // array of double precision IEEE 754
| string[] // array of UTF-8 *

Structured Normative Type fields

This subsection defines those fields of a Normative Type structure definition that are themselves structures or arrays of
structures.

The structured Normative Type fields would be implemented with type pvData field type “structure” or “structureAr-
ray”.

1.18. EPICS V4 Normative Types 249

http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#metalang_scalar
http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#metalang_scalar_array
http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#metalang_structure
http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#metalang_structure_array
http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#metalang_structure_array

EPICS Documentation

enum_t

An enum_t describes an enumeration. The field is a structure describing a value drawn from a given set of valid values
also given. It is implemented as a pvData Field of type “structure” of type ID “enum_t” with the following form:

enum_t :=

structure
int index
string[] choices

where:

index
The index of the current value of the enumeration in the array choices below.

choices
An array of strings specifying the set of labels for the valid values of the enumeration.

enum_t[]

An enum_t[] describes an array of enumerations. The field is an array of structures each describing a value drawn
from a given set of valid values also given in each. It is implemented as a pvData field of type “structureArray”, each
element of which is a structure of the form enum_t above.

time_t

A time_t] describes a defined point in time. The field is a structure describing a time relative to midnight on January
1st, 1970 UTC. It is implemented as a pvData field of type “structure” of type ID “time_t” and with the following form:

time_t :=

structure
long secondsPastEpoch
int nanoseconds
int userTag

where:

secondsPastEpoch
Seconds since Jan 1, 1970 00:00:00 UTC.

nanoseconds
Nanoseconds relative to the secondsPastEpoch field.

userTag
An integer value whose interpretation is deliberately undefined and therefore MAY be used by EPICS V4 agents
in a user defined way.

Interpretation: The point in time being identified by a time_t, is given by Jan 1, 1970 00:00:00 UTC plus some nanosec-
onds given by its secondsPastEpoch times 109 plus its nanoseconds.

250 Chapter 1. How this documentation is organized

http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#metalang_structure
http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#metalang_structure_array
http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#metalang_structure

EPICS Documentation

time_t[]

A time_t[] describes an array of points in time. The field is an array of structures each describing a time relative
to January 1st, 1970 UTC. It is implemented as a pvData field of type “structureArray”, each element of which is a
structure of the form time_t above.

alarm_t

An alarm_t describes a diagnostic of the value of a control system process variable. It indicates essentially whether
the associated value is good or bad, and whether agent systems should alert people to the status of the process.

Processes in EPICS V3 and V4 IOCs include extensive support for evaluating alarm conditions. The definition of the
fields in an alarm are given in bib:epicsrecref . The field is a structure describing an alarm. It is implemented as a
pvData field of type “structure” of type ID “alarm_t” with the following form:

alarm_t :=

structure
int severity
int status
string message

where:

severity
severity is defined as an int (not an enum_t), but MUST be functionally interpreted as the enumeration {noAlarm,
minorAlarm, majorAlarm, invalidAlarm, undefinedAlarm } indexed from noAlarm=0 bib:epicsrecref .

status
status is defined as an int (not an enum_t), but MUST be functionally interpreted as the enumeration {noSta-
tus, deviceStatus, driverStatus, recordStatus, dbStatus, confStatus, undefinedStatus, clientStatus } indexed from
noStatus=0 bib:epicsrecref .

message
A message string.

Interpretation MUST be as with V3 IOC record processing, as described in the EPICS Reference Manual
bib:epicsrecref .

alarm_t[]

An alarm_t[] is an array of alarm conditions. The field is an array of structures each describing an alarm condition.
It is implemented as a pvData field of type “structureArray”, each element of which is a structure of the form alarm_t
above.

1.18. EPICS V4 Normative Types 251

http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#metalang_structure_array
http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#metalang_structure
http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#metalang_structure_array

EPICS Documentation

alarmLimit_t

An alarmLimit_t is a structure that gives the numeric intervals to be used for the high and low limit ranges of an
associated value field. The specific value to which the alarmLimit refers, is not specified in the alarmLimit structure. It
is usually a value field of type double that appears in the same structure as the alarmLimit. alarmLimit_t is implemented
as a pvData field of type “structure” of type ID “alarmLimit_t” with the following form:

alarmLimit_t :=

structure
boolean active
double lowAlarmLimit
double lowWarningLimit
double highWarningLimit
double highAlarmLimit
int lowAlarmSeverity
int lowWarningSeverity
int highWarningSeverity
int highAlarmSeverity
double hysteresis

where:

active
Is alarming active? If no then alarms are not raised. If yes then the associated value is checked for alarm
conditions.

lowAlarmLimit
If the value is <= lowAlarmLimit then the severity is lowAlarmSeverity.

lowWarningLimit
If the value is > lowAlarmLimit and <= lowWarningLimit then the severity is lowWarningSeverity.

highWarningLimit
If the value is >= highWarningLimit and < highAlarmLimit then the severity is highWarningLimit.

highAlarmLimit
If the value is >= highAlarmLimit then the severity is highAlarmSeverity.

lowAlarmSeverity
Severity for value that satisfies lowAlarmLimit.

lowWarningSeverity
Severity for value that satisfies lowWarningLimit.

highWarningSeverity
Severity for value that satisfies highWarningLimit.

highAlarmSeverity
Severity for value that satisfies highAlarmLimit.

hysteresis
When a value enters an alarm limit this is how much it must change before is it put into a lower severity state.
This prevents alarm chatter.

Code that checks for alarms should use code similar to the following:

boolean active = pvActive.get();
if(!active) return;

(continues on next page)

252 Chapter 1. How this documentation is organized

http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#metalang_structure

EPICS Documentation

(continued from previous page)

double val = pvValue.get();
int severity = pvHighAlarmSeverity.get();
double level = pvHighAlarmLimit.get();
if(severity>0 && (val>=level)) {

raiseAlarm(level,val,severity,"highAlarm");
return;

}
severity = pvLowAlarmSeverity.get();
level = pvLowAlarmLimit.get();
if(severity>0 && (val<=level)) {

raiseAlarm(level,val,severity,"lowAlarm");
return;

}
severity = pvHighWarningSeverity.get();
level = pvHighWarningLimit.get();
if(severity>0 && (val>=level)) {

raiseAlarm(level,val,severity,"highWarning");
return;

}
severity = pvLowWarningSeverity.get();
level = pvLowWarningLimit.get();
if(severity>0 && (val<=level)) {

raiseAlarm(level,val,severity,"lowWarning");
return;

}
raiseAlarm(0,val,0,"");

NOTE: The current pvData implementations have a structure named valueAlarm_t instead of alarmLimit_t. val-
ueAlarm_t is similar to alarmLimit_t, except that the former’s alarm limit fields (lowAlarmLimit, lowWarningLimit,
highWarningLimit and highAlarmLimit) can be any integer or floating point scalar type (the same type for all the
limit fields in each case), rather than only double. There is also a separate form for alarm limits for boolean val-
ues. alarmLimit_t is identical to the valueAlarm_t for type double, except that the type ID of valueAlarm_t is “val-
ueAlarm_t”). Normative types only defines alarmLimit since this is what clients like plot tools use.

alarmLimit_t[]

An alarmLimit_t[] is an array of alarm limit conditions. The field is an array of structures each describing an alarm
limit. It is implemented as a pvData field of type “structureArray”, each element of which is a structure of the form
alarmLimit_t above.

display_t

A display_t is a structure that describes some typical attributes of a numerical value that are of interest when displaying
the value on a computer screen or similar medium. The units field SHOULD contain a string representation of the
physical units for the value, if any. The description field SHOULD contain a short (one-line) description of what
the value represents, such as can be used as a label in a display. The fields limitLow and limitHigh represent the
range in between which the value should be presented as adjustable.

The field is a structure describing a display_t. It is implemented as a pvData field of type “structure” of type ID
“display_t” with the following form:

1.18. EPICS V4 Normative Types 253

http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#metalang_structure_array
http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#metalang_structure

EPICS Documentation

display_t :=

structure
double limitLow
double limitHigh
string description
string units
int precision
enum_t form(3)

int index
string[] choices ["Default", "String", "Binary", "Decimal", "Hex", "Exponential",

→˓ "Engineering"]

where:

limitLow
The lower bound of range within which the value must be set, to be presented to a user.

limitHigh
The upper bound of range within which the value must be set, to be presented to a user.

description
A textual summary of the variable that the value quantifies.

precision
Number of decimal points that are displayed when formatting a floating point number. This corresponds to the
PREC field in EPICS database records with floating point values (e.g., ai, ao, calc, calcout record types.)

form
An enumeration to specify formatting a value to be displayed. By default, a floating point number is formatted
with the number of decimal points defined in the precision field. Formatting of an EPICS database record value
can be configured by including eg. info(Q:form, “Hex”) in record definition.

units
The units for the value field.

Where an display_t structure instance is present in a Normative Type structure, it MUST be interpreted as referring to
that Normative Type’s field named “value”. Therefore it is only used in Normative Types that have a single numeric
“value” field.

254 Chapter 1. How this documentation is organized

EPICS Documentation

display_t[]

A display_t[] is an array of display_t. The field is an array of structures each describing the display media oriented
metadata of some corresponding process variable value, as described by display_t above. It is implemented as a pvData
field of type “structureArray”, each element of which is a structure of the form display_t above.

control_t

A control_t is a structure that describes a range, given by the interval (limitLow,limitHigh), within which it is expected
some control software or hardware shall bind the control PV to which this Normative Type instance’s value field refers
as well as a minimum step change of the control PV.

The field is a structure describing a control_t. It is implemented as a pvData field of type “structure” of type ID
“control_t” with the following form:

control_t :=

structure
double limitLow
double limitHigh
double minStep

where:

lowLimit
The control low limit for the value field.

highLimit
The control high limit for the value field.

minStep
The minimum step change for the value field.

control_t[]

A control_t[] is an array of control_t. The field is an array of structures each describing the setpoint range interval
of some process variable. It is implemented as a pvData field of type “structureArray”, each element of which is a
structure of the form control_t above.

Union Normative Type fields

This subsection defines those fields of a Normative Type structure definition that are unions or arrays of unions.

The union NormativeType fields are implemented with pvData fields of type “union” or “unionArray”.

The union Normative Type fields consist of the variant union any and variant union array any\[\] as well as a number
of non-terminal terms:

1.18. EPICS V4 Normative Types 255

http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#metalang_structure_array
http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#metalang_structure
http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#metalang_structure_array
http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#metalang_union
http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#metalang_union_array

EPICS Documentation

any

This is a field which is a variant union and is implemented using the pvData field type “union”.

any[]

This is a field that is an array of any, implemented using the pvData field type “unionArray”.

ntunion_t

ntunion_t stands for any regular union of ntfields and is implemented using the pvData field type “union”:

ntunion_t :=

union
{ntfield field-name}1+ // 1 or more ntfields.

ntunion_t[]

An ntunion_t[] stands for an array of unions, where the union is any regular union of 1 or more ntfields. It is imple-
mented as a pvData field of type “unionArray” each element of which is a union (the same one in each case) of the
form ntunion_t above.

union_t

union_t stands for any regular union of pvData fields and is implemented using the pvData field of type “union”:

union_t :=

union
{pvDataField}1+ // 1 or more pvData fields.

where:

pvDataField
Stands for any pvData field.

union_t[]

A union_t[] stands for an array of unions, where the union is any regular union of 1 or more pvData fields. It is
implemented as a pvData field of type “unionArray” each element of which is a union (the same one in each case) of
the form union_t above.

256 Chapter 1. How this documentation is organized

http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#metalang_union
http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#metalang_union_array
http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#metalang_union
http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#metalang_union_array
http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#metalang_union
http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#metalang_union_array

EPICS Documentation

anyunion_t

anyunion_t stands for a variant union or any regular union of pvData fields and is implemented using the pvData field
type “union”:

anyunion_t:=

any | union_t

anyunion_t[]

An anyunion_t[] stands for a variant union array or a regular union array of any type an array of unions, where the
union is any regular union of 1 or more pvData fields. It is implemented as a pvData field of type “unionArray” each
element of which is a union (the same one in each case) of the form anyunion_t above:

anyunion_t[]:=

any[] | union_t[]

1.18.8 Normative Type Metadata

Metadata are included in runtime instances of Normative Types. The metadata includes to which Normative Type the
structure instance conforms, version information, and other data to aid efficient processing, diagnostics and displays.

Normative Type instance self-identification

Normative Type instance data MUST identify themselves as such by including an identifying string. That is the Nor-
mative Type Identifier, or “Ntype Identifier” string for short. In the pvData binding of Normative Types, this string is
carried in the type ID, added automatically to every pvData structure.

A Normative Type Identifier MUST be considered to be “case sensitive.”

The namespace Name of EPICS Normative Types (which is used as the prefix for their pvData type ID), is the following:

epics:nt

The normative list of the Normative Type Identifiers corresponding to this draft of the EPICS V4 Normative Types
specification document (this document), is given in Appendix B

As an example, one of the simplest Normative Types is NTScalar. It has formal Type Name “NTScalar”. Therefore,
the Normative Type Identifier for an NTScalar, is presently epics:nt/NTScalar:1.0.

At present it is envisaged that the same namespace value shall be used for all versions of this document prior to Rec-
ommendation, including all Public Working Drafts of this document and those marked Last Call or similar.

1.18. EPICS V4 Normative Types 257

http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#metalang_union
http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#metalang_union_array
http://epics-pvdata.sourceforge.net/epicsv4process.html#normative_document_development_and_publication_process
http://epics-pvdata.sourceforge.net/epicsv4process.html#normative_document_development_and_publication_process

EPICS Documentation

pvAccess binding type identification

In the EPICS v4 pvData/pvAccess binding, the structure identification string (ID) of pvData structures is used to
communicate the Normative Type of the datum carried by the pvData structure. Every pvData datum which is intended
to conform to a Normative Type, MUST identify the Normative Type to which it conforms through its type ID. Its ID
MUST have the value of its Normative Type Identifier. For instance, a pvData structure conforming to NTScalar, must
have ID equal to “epics:nt/NTScalar:1.0”. Every EPICS V4 agent which is encoding or decoding pvData data that is
described by Normative Types, SHOULD examine the ID of such data, to establish the Normative Type to which each
datum conforms.

Example pvAccess/pvData binding

Recall that in the pvData system, data variables are constructed in two equally important parts; the introspection inter-
face, in which data types are defined, and the data interface, in which instance variables are created and populated. The
introspection interface can be used to examine an existing instance, to see what fields it possesses. Getting and setting
values, is done through the data interface. As a programmer, you have to define both parts, the introspection interface
of your type, and its data interface. Both the data and the introspection interfaces are exchanged by pvAccess. That is,
when a sender constructs a data type, such as one conforming to an Normative Type, plus an instance of that type, and
it sends the instance to a receiver, the receiver can check that the instance indeed contains the member fields it should
find for that type, using the type’s introspection interface.

The following Java code snippets give an example of the use of a pvData structure of Normative Type NTScalar, as
defined below. in this example we show code as may be included in a trivial “multiplier” service, and a client of the
multiplier service.

Sender

The sender typically first creates an introspection definition, using the pvData introspection interfaces (Field, Structure
etc.). It then creates an instance of the type and populates it with the pvData data interfaces (PVField, PVStructure
etc.).

Example of creating the introspection interface of an NTScalar, as may be done on a server that will be returning one.
In this example, only one of the optional fields of NTScalar, named “descriptor” is included, along with the required
field named “value”.

// Create the data type definition, using the pvData introspection interface (Structure␣
→˓etc.).
FieldCreate fieldCreate = FieldFactory.getFieldCreate();
Structure resultStructure = fieldCreate.createStructure("epics:nt/NTScalar:1.0",

new String[] { "value", "descriptor" },
new Field[] { fieldCreate.createScalar(ScalarType.pvDouble),

fieldCreate.createScalar(ScalarType.pvString) });

Subsequently, the sender would create an instance of the type, and populate it.

Example of creating an instance and data interface of an NTScalar, as may be done on a data server, and populating it.

// If a and b were arguments to this service, the following creates an instance of
// a resultStructure, which conforms to the NTScalar Normative Type definition,
// and populates it. It would then return this PVStructure instance.
PVStructure result = PVDataFactory.getPVDataCreate().createPVStructure(resultStructure);
result.getDoubleField("value").put(a * b);
result.getStringField("descriptor").put("The product of arguments a and b");

258 Chapter 1. How this documentation is organized

http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#introspection_interfaces
http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#introspection_interfaces
http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#data_interfaces

EPICS Documentation

The PVStructure instance, in the example called “result” would be returned to the receiver.

Receiver

Having in some way done a pvAccess get, the receiver could simply extract the primary value:

PVStructure result = easyPVA.createChannel("multiplierService").createRPC().
→˓request(request);
double product = result.getDoubleField("value").get();

A well written receiver would check that the introspection interface (Structure etc.) says that the received instance is
indeed of the type it expects. It may extract the data fields individually, checking their type. Importantly, it can also
see which optional fields it received, before attempting to access them. Here is a more complete receiver example for
the NTScalar sent above. This code might be in the client side of the Multiplier service.

Example of a receiver of an NTScalar. The example checks that the returned pvData datum was an instance of an
NTScalar, extracts the required value field, and then, if it’s present, extracts the optional “descriptor” field.

// Call the multiplier service sending the request in a structure
PVStructure result = easyPVA.createChannel("multiplierService").createRPC().
→˓request(request);

// Examine the returned structure via its introspection interface, to check whether its
// identifier says that it is a Normative Type, and the type we expected.
if (!result.getStructure().getID().equals("epics:nt/NTScalar:1.0"))
{

System.err.println("Unexpected data identifier returned from multiplierService: " +
"Expected Normative Type ID epics:nt/NTScalar:1.0, but got "
+ result.getStructure().getID());

System.exit(-1);
}

// Get and print the required value member field as a Double.
System.out.println("value = " + result.getDoubleField("value").get());

// See if there was also the descriptor subField, and if so, get it and print it.
PVString descriptorpv = (PVString)result.getSubField("descriptor");
if (descriptorpv != null)

System.out.println("descriptor = " + descriptorpv.get());

// Or just print everything we got:
System.out.println("\nWhole result structure toString =\n" + result);

Future of type identification

In future drafts of this specification, a pattern to create extensions to the EPICS V4 Normative Types may be presented.
It may be based on a formalized link to the XML namespace and XML Schema system, whereby the namespace part
of the Normative Type Identifier of a datum whose type is an extension of one of these Normative Types, is replaced by
another namespace that extends this one through an XML Schema out of band. In that case, the type name part would
identify a type in that other namespace, though it may extend a type in this namespace.

1.18. EPICS V4 Normative Types 259

EPICS Documentation

Standard optional metadata fields

All of the Normative Types defined below, optionally include a descriptor, alarm and timestamp. There is no required
interpretation of these fields, and therefore their meaning is not further described in the Normative Type definitions.
Additionally, Normative Types may have other optional fields, as defined individually below.

Optional descriptor field

An object of Normative Type may optionally include a field named “descriptor” and of type string, to be used to give
identity, name, or sense information. For instance, it may be valued with the name of a device associated with control
data, or the run number of a table of model data.

string descriptor :opt // Contextual information

Optional alarm field

An object of Normative Type may optionally include an alarm field.

alarm_t alarm :opt // Control system event summary

Optional timeStamp field

An object of Normative Type may optionally include a timeStamp field.

time_t timeStamp :opt // Event time

1.18.9 General Normative Types

The General Normative Types are for encapsulating data of any kind of application or use case. Compare to Specific
Normative Types, defined later in this document, which are oriented to particular use cases.

NTScalar

NTScalar is the EPICS V4 Normative Type that describes a single scalar value plus metadata:

NTScalar :=

structure
scalar_t value
string descriptor :opt
alarm_t alarm :opt
time_t timeStamp :opt
display_t display :opt
control_t control :opt

where:

value
The primary data carried by the NTScalar object. The field must be named “value” and can be of any simple
scalar type as defined above.

260 Chapter 1. How this documentation is organized

EPICS Documentation

NTScalarArray

NTScalarArray is the EPICS V4 Normative Type that describes an array of values, plus metadata. All the elements of
the array of the same scalar type.

NTScalarArray :=

structure
scalar_t[] value
string descriptor :opt
alarm_t alarm :opt
time_t timeStamp :opt
display_t display :opt
control_t control :opt

where:

value
The primary data carried by the NTScalarArray object. The field must be named “value” and can be of any scalar
array type as defined above.

NTEnum

NTEnum is an EPICS V4 Normative Type that describes an enumeration (a closed set of possible values each described
by an n-tuple).

NTEnum :=

structure
enum_t value
string descriptor :opt
alarm_t alarm :opt
time_t timeStamp :opt

where:

value
The primary data carried by the NTEnum object. The field must be named “value” and must be an enumeration
as defined above.

NTMatrix

NTMatrix is an EPICS V4 Normative Type used to define a matrix, specifically a 2-dimensional array of real numbers.

NTMatrix :=

structure
double[] value
int[2] dim :opt
string descriptor :opt
alarm_t alarm :opt
time_t timeStamp :opt
display_t display :opt

1.18. EPICS V4 Normative Types 261

EPICS Documentation

where:

value
The numerical data comprising the matrix. The value is given as a single array of doubles. When value holds
the data of a matrix, rather than a vector, then the data MUST be laid out in “row major order”; that is, all the
elements of the first row, then all the elements of the second row, and so on. For instance, where NTMatrix
represented a 6x6 matrix, element (1,2) of the matrix would be in the 2nd element of value, and element (3,4)
would be in the 16th element.

dim
dim indicates the dimensions of the matrix. If dim is not present, value MUST be interpreted as a vector, of
length equal to the number of elements of value. If dim is present, then it must have 1 or 2 elements; its one
element value or both elements values MUST be > 0, and the number of elements in value MUST be equal to
the product of the elements of dim. If dim is present and contains a single element, then the NTMatrix MUST
be interpreted as describing a vector. A dim] of 2 elements describes a matrix, where the first element of dim
gives the number of rows, and the second element of dim gives the number columns. If dim is present and
contains 2 elements, of which the first is unity, and the second is not (therefore is >1) then the NTMatrix MUST
be interpreted as describing a row vector. If dim is present as contains 2 elements, of which the second is unity,
and the first is not (therefore is >1) then the NTMatrix MUST be interpreted as describing a column vector.

User agents that print or otherwise render an NTMatrix SHOULD print row vector, column vector, and non-vector
matrices appropriately.

NTURI

NTURI is the EPICS V4 Normative Type that describes a Uniform Resource Identifier (URI) bib:uri. Specifically,
NTURI carries the four parts of a “Generic URI”, as described in bib:uri as the subset of URI that share a common
syntax for representing hierarchical relationships within the namespace. As such, NTURI is intended to be able to
encode any generic URI scheme’s data. However, NTURI’s primary purpose in the context of EPICS, is to offer a well
formed and standard compliant way that EPICS agents can make a request for an identified resource from a channel,
especially an EPICS V4 RPC channel. See ChannelRPC.

The “pva” scheme is introduced here for EPICS V4 interactions. The pva scheme implies but does not require use of
the pvAccess protocol. A scheme description for Channel Access (implying the ca protocol) will be added later. What
follows is a description of the syntax and semantics for the pva scheme.

NTURI :=

structure
string scheme
string authority : opt
string path
structure query : opt

{string | double | int <field-name>}0+
{<field-type> <field-name>}0+

262 Chapter 1. How this documentation is organized

http://epics-pvdata.sourceforge.net/docbuild/pvAccessJava/tip/documentation/pvAccessJava.html#channelrpc

EPICS Documentation

Interpretation of NTURI under the “pva” scheme

The following describes how the fields of the NTURI must be interpreted when the scheme is “pva”:

scheme
The scheme name must be given. For the pva scheme, the scheme name is “pva”. The pva scheme implies but
does not require use of the pvAccess protocol.

authority
If given, then the IP name or address of an EPICS network pvAccess or channel access server.

path
The path gives the channel from which data is being requested.

query
A name value system for passing parameters. The types of the argument value MUST be drawn from the following
restricted set of scalar types: double, int, or string.

<field-type>
Zero or more pvData Fields whose type are not defined until runtime, may be added to an NTURI by an agent
creating an NTURI. This is the mechanism by which complex data may be sent to a channel. For instance a table
of magnet setpoints.

The channel name given in the path MAY BE the name of an RPC channel. In that case, it’s important to note that
this specification makes no normative statement about where in the NTURI is encoded the name of the entity about
which the RPC service is being called. For instance, an archive service, that gives the historical values of channels, may
advertise itself as being on a single channel called say “archive service” (so the NTURI path field in that case would
be set to “archiveservice”, and in that case, the name of the EPICS channel about which archive data is wanted might
well be encoded into one of the NTURI’s query field parameters. Alternatively, the archive service might advertise
a number of channels, each named perhaps after the channels whose historical data is being requested. For instance,
a path may be “quad45:bdes;history”, if that was the name of one of the channels offered by the archive service. An
example of this second form is given below.

Use of NTURI may be explained by example. The following is an example client side of Channel RPC exchange,
where a notional archive service, is asked for the data for a PV between two points in time. In this example, the archive
service is advertising the channel name “quad45:bdes;history”. Presumably, that service knows the archive history of
a (second) channel, named probably, “quad45:bdes”.

Construct the introspection interface (i.e. type definition) of the NTURI conformant structure that will be used to make
requests to the archive service.

// Construct an NTURI for making a request to a service that understands
// query arguments named "starttime" and "endtime".
FieldCreate fieldCreate = FieldFactory.getFieldCreate();
Structure queryStructure = fieldCreate.createStructure(

new String[] {"starttime", "endtime"},
new Field[] { fieldCreate.createScalar(ScalarType.pvString),

fieldCreate.createScalar(ScalarType.pvString)});
Structure uriStructure =

fieldCreate.createStructure("epics:nt/NTURI:1.0",
new String[] { "path", "query" },
new Field[] { fieldCreate.createScalar(ScalarType.pvString),

queryStructure });

Populate our uriStructure (conformant to NTURI) with a specific request.

1.18. EPICS V4 Normative Types 263

EPICS Documentation

// Get a EasyPVA singleton.
EasyPVA easyPVA = EasyPVAFactory.get();

// Construct an NTURI with which to ask for the archive data of quad45:bdes
PVStructure request = PVDataFactory.getPVDataCreate().

createPVStructure(uriStructure);
request.getStringField("path").put("quad45:bdes;history");
PVStructure query = request.getStructureField("query");
query.getStringField("starttime").put("2011-09-16T02.12.55");
query.getStringField("endtime").put("2011-09-16T10.01.03");

// Ask for the data, using the NTURI
PVStructure result = easyPVA.createChannel(request.getStringField("path").get()).
→˓createRPC().request(request);
if (result != null)

System.out.println("The URI request structure:\n" + request
+"\n\nResulted in:\n" + result);

The server side is not illustrated, but clearly its code would have registered a number of ChannelRPC services, each
named after the PV whose historical data it offered.

NTNameValue

NTNameValue is the EPICS V4 Normative Type that describes a system of name and scalar values.

Use cases: In a school, a single NTNamedValue might describe the grades from a number of classes for one student.

NTNameValue :=

structure
string[] name
scalar_t[] value
string descriptor :opt
alarm_t alarm :opt
time_t timeStamp :opt

where:

name
The keys associated with the ’valuefield. Each element ofnameidentifies the same indexed
element of thevalue` field, using a string label.

value
The data values, each element of which is associated with the correspondingly indexed element of the name field.

Each name (or “key”) in the array of names, MUST be interpreted as being associated with its same indexed element
of the value array.

264 Chapter 1. How this documentation is organized

EPICS Documentation

NTTable

NTTable is the EPICS V4 Normative Type suitable for column-oriented tabular datasets.

An NTTable is made up of a number of arrays. Each array can be thought of as a column. Each array MUST be of a
scalar type and all the arrays MUST be of the same length. Each array may be of a different scalar type. The set of
the ith array members of all the columns make up one row, or n-tuple. The number of elements of labels MUST be
equal to the number of fields of value.

Use case examples: a table of the Twiss parameters of all the lattice elements in an accelerator section. Another
example, where the columns might vary call-to-call to an RPC setting, would be that of an EPICS V4 SQL database
service. In that example one NTTable returned by the service would contain the tabular results of a SQL SELECT,
essentially a recoded JDBC or ODBC ResultSet - see the rdbservice.

NTTable :=

structure
string[] labels // Very short text describing each field below, i.e.␣

→˓column labels
structure value

{scalar_t[] colname}0+ // 0 or more scalar array instances, the column values.
string descriptor : opt
alarm_t alarm : opt
time_t timeStamp : opt

where:

labels
The table column headings are given by the labels field. Each column heading given as one element of the
array of strings.

value
The data of the table are encoded in a structure named value. The columnar data field is named “value” (rather
than, for instance, “columndata”) so that the primary field of the type is named the same for all Normative Types.
That helps general purpose clients identify the primary field of any Normative Type instance.

Interpretation

An NTTable instance represents a table of data. The column data is given in scalar arrays in the structure field value,
and the column headings are given in field labels. Each / scalar array field of value contains the data for the column
corresponding to the same indexed element of the labels field. Agents SHOULD use the elements of labels as the
column headings. There is no normative requirement that the field names of ``value`` match the strings in ``labels``.

Note that the above description is given in terms of a table and its columns, but there is nothing specifically columnar
about how this data may be rendered. A user may choose to print the fields row wise if, for instance, if there are many
fields in value, but each has only length 1 or 2. For example, if one wanted to give all the scalar data related to one
device, then one might use an NTTable rendered in such a way.

1.18. EPICS V4 Normative Types 265

EPICS Documentation

Validation

The number of scalar_t[] fields in the value structure, and the length of labels MUST be the same. All scalar_t[]
fields in the value structure MUST have the same length, which is the number of “rows” in the table.

NTAttribute

NTAttribute is the EPICS V4 Normative Type for a named attribute of any type. It is is essentially a key-value pair
which optionally can be tagged with additional strings.

This allows, for example, a collection of attributes to be queried on the basis of attribute name or tags.

NTAttribute :=

structure
string name
any value
string[] tags : opt
string descriptor : opt
alarm_t alarm : opt
time_t timeStamp : opt

where:

name
The name of the attribute. The “key” of the key-value pair.

value
The value of the attribute. The “value” of a key-value pair.

tags
Additional tags that an attribute can carry.

1.18.10 Specific Normative Types

The “Specific Normative Types” below are types oriented towards application-level scientific and engineering use cases.
Compare to General Normative Types defined above. The currently defined types are each described in a section below.

Unless otherwise stated:

• Times MUST be in seconds

• Frequencies MUST be in Hz.

NTMultiChannel

NTMultiChannel is an EPICS V4 Normative Type that aggregates an array of values from different EPICS Process
Variable (PV) channel sources, not necessarily of the same type, into a single variable.

NTMultiChannel :=

structure
anyunion_t[] value // The channel values
string[] channelName // The channel names

(continues on next page)

266 Chapter 1. How this documentation is organized

EPICS Documentation

(continued from previous page)

string descriptor :opt
alarm_t alarm :opt
time_t timeStamp :opt
int[] severity :opt
int[] status :opt
string[] message :opt
long[] secondsPastEpoch :opt
int[] nanoseconds :opt
int[] userTag :opt

where:

value
The value from each channel.

channelName
The name of each channel.

alarm
The alarm associated with the NTMultiChannel itself. severity, status, and message show the alarm for
each channel.

timeStamp
The timestamp associated with the NTMultiChannel itself. secondsPastEpoch, nanoseconds and userTag
show the timestamp for each channel.

severity
The alarm severity associated with each channel.

status
The alarm status associated with each channel.

message
The alarm message associated with each channel.

secondsPastEpoch
The secondsPastEpoch field of the timestamp associated with each channel.

nanoseconds
The nanoseconds field of the timestamp associated with each channel.

userTag
The userTag field of the timestamp associated with each channel.

NTNDArray

NTNDArray is an EPICS Version 4 Normative Type designed to encode data from detectors and cameras, especially
areaDetector applications. The type is heavily modeled on areaDetector’s NDArray class. One NTNDArray gives one
frame.

The definition of NTNDArray in full is:

NTNDArray :=

structure
value_t value
codec_t codec

(continues on next page)

1.18. EPICS V4 Normative Types 267

http://cars9.uchicago.edu/software/epics/areaDetector.html
http://cars9.uchicago.edu/software/epics/areaDetectorDoxygenHTML/class_n_d_array.html

EPICS Documentation

(continued from previous page)

long compressedSize
long uncompressedSize
dimension_t[] dimension
int uniqueId
time_t dataTimeStamp
NTAttribute[] attribute
string descriptor :opt
alarm_t alarm :opt
time_t timeStamp :opt
display_t display :opt

The meaning of the above fields, the definition of value_t and of dimension_t and the additional requirements for
NDAttribute are described below. To simplify this the NTNDArray can be regarded as being composed of the following
parts:

NTNDArray :=

structure
Image data and codec
Data sizes
Dimensions
Unique ID and data timestamp
Attributes
Optional fields

Each of these will be discussed separately.

Image data and codec

The Image data and codec parts of an NTNDArray are composed of the following fields:

value_t value // Image data
codec_t codec // Codec

where:

value
An array which encodes an N-dimensional array containing the data for the image itself.

codec
Information on the how the data in value encodes the N-dimensional array.

A value_t is implemented as a pvData Field of type “union” with the following form:

value_t:=

union
boolean[] booleanValue
byte[] byteValue
short[] shortValue
int[] intValue
long[] longValue
ubyte[] ubyteValue

(continues on next page)

268 Chapter 1. How this documentation is organized

http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#metalang_union

EPICS Documentation

(continued from previous page)

ushort[] ushortValue
uint[] uintValue
ulong[] ulongValue
float[] floatValue
double[] doubleValue

A codec_t is implemented as a pvData Field of type “structure” of type ID “codec_t” with the following form:

codec_t :=

structure
string name
any parameters

where:

name
The encoding scheme, e.g. the codec in the case of compressed data.

parameters
Any additional information required to interpret the data.

The value field stores a scalar array of one of the scalar types permitted by the definition of value above whose value
MUST represent an N-dimensional scalar array of one of the permitted scalar types whose dimensions are given by the
dimension field (see below). Note that the scalar type of the array stored in value MAY be different from that of the
array it represents.

The codec field is a structure which describes how the N-dimensional scalar array is represented by the value of the
scalar array stored in the value field.

The name field of the codec field (codec.name) is a string which identifies the scheme by which the data in value is
encoded, such as an algorithm used to compress the data. If it is not the empty string, the value of the codec.name
field SHOULD be namespace qualified.

The parameters field of the codec field (codec.parameters) is a field which contains any additional information
required to interpret the data in value. The format and meaning of codec.parameters is codec.name-dependent.

When the value of the codec.name field is the empty string the data in valueMUST represent an N-dimensional array
of the same scalar type as the scalar array stored in value whose dimensions are given by the dimension field. The
elements of the array stored in value MUST be the elements of the N-dimensional array laid out in row major order.
In this case the length of the value array SHOULD equal the product of the dimensions and MUST be greater than or
equal to it.

When the codec.name field value is not the empty string the interpretation of the data in the value field is dependent
on the codec field. Any requirements on the type or length of the array stored in the value field are codec-dependent.

Any endianness information associated with a compression algorithm or other encoding SHOULD be encoded via the
codec field, either through the codec.name or codec.parameters fields.

Similarly any information required to determine the scalar type of the N-dimensional array when the value of codec.
name field is non-empty SHOULD also be encoded in the codec field.

Except for the above requirements, the meaning of the codec field, beyond the case of the empty codec.name string,
is not currently specified.

1.18. EPICS V4 Normative Types 269

http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#metalang_structure

EPICS Documentation

Data sizes

The Data sizes] part of an NTNDArray is composed of the following fields:

long compressedSize
long uncompressedSize

where:

compressedSize
The size of the data in bytes after any compression or other encoding.

uncompressedSize
The size of the data in bytes before any compression or other encoding.

The value of the compressedSize field MUST be equal to the product of the length of the scalar array field stored in
the value field and the size of the scalar type in bytes (i.e. 1, 2, 4 or 8 for signed or unsigned byte, short, int or long
respectively, 1 for boolean, 4 for float and 8 for double).

The value of the uncompressedSize field MUST be equal to the product of the value of the size field of each element
in the structure array dimension field (described below) and the size in bytes of the scalar type of the scalar array
represented by value. If the number of elements of the dimension field is 0 the value of the uncompressedSize
MUST be 0.

Dimensions

The Dimensions part of an NTNDArray is composed of the dimension field

dimension_t[] dimension

A dimension_t is implemented as a pvData Field of type “structure” of type ID “dimension_t” with the following form:

dimension_t :=

structure
int size
int offset
int fullSize
int binning
boolean reverse

where:

size
The number of elements in this dimension of the array.

offset
The offset in this dimension relative to the origin of the original data source.

fullSize
The number of elements in this dimension of the the original data source.

binning
The binning (pixel summation, 1=no binning) in this dimension relative to original data source source.

reverse
The orientation (false=normal, true=reversed) in this dimension relative to the original data source source.

270 Chapter 1. How this documentation is organized

http://epics-pvdata.sourceforge.net/docbuild/pvDataJava/tip/documentation/pvDataJava.html#metalang_structure

EPICS Documentation

The number of elements in the value of the dimension field MAY be 0. A client SHOULD check for this case and
take appropriate action.

If an NTNDArray represents a subregion of a larger region of interest of an original image, its offset, binning and
reversefield values SHOULD be relative to the original image and its fullSize field value SHOULD be the size of
the original.

dimension_t is analogous to NDDimension_t in areaDetector.

Unique ID and data timestamp

The Unique ID and data timestamp parts of an NTNDArray are composed of the following fields:

int uniqueId
time_t dataTimeStamp

where:

uniqueId
A number that SHOULD be unique for all NTNDArrays produced by a source after it has started.

dataTimeStamp
Timestamp of the data.

The value of dataTimeStamp MAY be different from that of the (optional) timeStamp field below.

The uniqueId and dataTimeStamp fields of NTNDArray correspond to the uniqueId and timeStamp fields respec-
tively of an NDArray.

NTNDArray attributes

The Attributes part of an NTNDArray is composed of the field:

NTAttribute[] attribute

where NTAttribute is as defined by this standard, but is extended in this case as follows:

NTAttribute :=

structure
string name
any value
string[] tags : opt
string descriptor
alarm_t alarm : opt
time_t timeStamp : opt
int sourceType
string source

where:

sourceType
The origin of the attribute

1.18. EPICS V4 Normative Types 271

http://cars9.uchicago.edu/software/epics/areaDetectorDoxygenHTML/struct_n_d_dimension.html

EPICS Documentation

NDAttrSourceDriver = 0, /** Attribute is obtained directly from driver */
NDAttrSourceParam = 1, /** Attribute is obtained from an asyn parameter␣
→˓library */
NDAttrSourceEPICSPV = 2, /** Attribute is obtained from an EPICS PV */
NDAttrSourceFunct = 3 /** Attribute is obtained from a user-specified␣
→˓function */

source
The source string of this attribute.

Note that the optional descriptor field of NTAttribute is mandatory for attributes of an NTNDArray.

NTAttribute here is extended by the addition of the sourceType and source fields. source is a string which gives
the origin of the attribute according to the value of the integer sourceType field as follows:

• For a sourceType of value NDAttrSourceDriver the source string SHOULD be the empty string.

• For a sourceType of value NDAttrSourceParam the source string SHOULD be the name of the asyn param-
eter from which the attribute value was obtained.

• For a sourceType of value NDAttrSourceEPICSPV the source string SHOULD be the name of the EPICS
PV from which the attribute value was obtained.

• For a sourceType of value NDAttrSourceFunct the source string SHOULD be the name of the user function
from which the attribute value was obtained.

The extension of NTAttribute is analogous to NDAttribute in areaDetector. The name, descriptor, sourceType and
source fields correspond to the pName, pDescription, sourceType, pSource members of an NDAttribute respectively.

The attributes themselves are not defined by this standard.

For areaDetector applications the attribute field encodes the linked list of NDAttributes in an NDArray.

[Note: areaDetector currently defines two integer attributes, colorMode and bayerPattern, with descriptions “Color
mode” and “Bayer pattern” respectively:

colorMode
An attribute that describes how an N-d array is to be interpreted as an image, taking one of the values in this
enumeration:

NDColorModeMono = 0, /** Monochromatic image */
NDColorModeBayer = 1, /** Bayer pattern image,

1 value per pixel but with color filter on detector */
NDColorModeRGB1 = 2, /** RGB image with pixel color interleave,

data array is [3, NX, NY] */
NDColorModeRGB2 = 3, /** RGB image with row color interleave,

data array is [NX, 3, NY] */
NDColorModeRGB3 = 4, /** RGB image with plane color interleave,

data array is [NX, NY, 3] */
NDColorModeYUV444 = 5, /** YUV image, 3 bytes encodes 1 RGB pixel */
NDColorModeYUV422 = 6, /** YUV image, 4 bytes encodes 2 RGB pixel */
NDColorModeYUV411 = 7 /** YUV image, 6 bytes encodes 4 RGB pixels */

bayerPattern
An attribute valid when colorMode is NDColorModeBayer providing additional information required for the
interpretation of an N-d array as an image in this case, taking one of the values in this enumeration:

272 Chapter 1. How this documentation is organized

http://www.aps.anl.gov/epics/modules/soft/asyn/
http://cars9.uchicago.edu/software/epics/areaDetectorDoxygenHTML/class_n_d_attribute.html

EPICS Documentation

NDBayerRGGB = 0, /** First line RGRG, second line GBGB... */
NDBayerGBRG = 1, /** First line GBGB, second line RGRG... */
NDBayerGRBG = 2, /** First line GRGR, second line BGBG... */
NDBayerBGGR = 3 /** First line BGBG, second line GRGR... */

Other areaDetector attributes are user-defined.]

NTContinuum

NTContinuum is the EPICS V4 Normative Type used to express a sequence of point values in time or frequency domain.
Each point has N values (N>=1) and an additional value which describes the index of the list. The additional value is
carried in the base field. The value field carries the values which make up the point in index order.

An additional units field gives a units string for the N values and the additional value.

NTContinuum :=

structure
double[] base
double[] value
string[] units
string descriptor :opt
alarm_t alarm :opt
time_t timeStamp :opt

The number of values in a point must be derived as:

Nvals = len(value)/len(base)

And the following invariant must be preserved:

len(units)-1 == Nvals

For points (Ai, Bi, Ci) for indices i = 1, 2, 3 the value array is:

[A1, B1, C1, A2, B2, C2, A3, B3, C3]

NTHistogram

NTHistogram is the EPICS V4 Normative Type used to encode the data and representation of a (1 dimensional) his-
togram. Specifically, it encapsulates frequency binned data.

For 2d histograms (i.e. both x and y observations are binned) and n-tuple data (e.g. land masses of different listed
countries) see NTMatrix or NTTable.

NTHistogram :=

structure
double[] ranges // The start and end points of each bin
(short[] | int[] | long[]) value // The frequency count, or otherwise value, of␣

→˓each bin
string descriptor :opt
alarm_t alarm :opt
time_t timeStamp :opt

1.18. EPICS V4 Normative Types 273

EPICS Documentation

Interpretation

One NTHistogram gives the information required to convey a histogram representation of some underlying observa-
tions. It does not convey the values of each of the observations themselves.

The number of bins is given by the length of the value array. ranges indicates the low value and high value of each
bin. The range for bin(i) is given by ranges(i) to ranges(i+1). Specifically, since we want end points of both the first
bin and last bin included, all bin intervals except the last one, MUST be right half open; from that bin’s low value
ranges(i) (included) to that bin’s high value ranges(i+1) (excluded). The last bin MUST be fully open (low and high
value included).

A log plot histogram (in which the independent variable x is binned on a log scale), would be communicated using a
range array of decades (1.0E01, 1.0E02, 1.0E03 etc).

Validation

The array length of ranges MUST be the array length of value + 1.

NTAggregate

NTAggregate is the EPICS V4 Normative Type to compactly convey data which combines several measurements or
observation. NTAggregate gives simple summary statistic bib:agg about the central tendency and dispersion of a set
of data points.

Use cases: for instance, an NTAggregate could be used to summarize the value of one beam position offset reading
over some number of pulses (N). It also includes the time range of the sampled points, so it could be used for time
domain rebasing. For instance, an FPGA sending data at 10KHz, and you want to display its output, but you don’t want
to display at the native rate. Also, it could be used for transmitting or storing compressed archive data.

NTAggregate doesn’t cover the shape of a distribution so it only reasonably helps you do symmetrical distributions
(no skewness or kurtosis), and it doesn’t include any help for indicating the extent of dependency on another variable
(correlation).

NTAggregate :=

structure
double value // The center point of the observations,

// nominally the mean.
long N // Number of observations
double dispersion :opt // Dispersion of observations;

// nominally the Standard Deviation or RMS
double first :opt // Initial observation value
time_t firstTimeStamp :opt // Time of initial observation
double last :opt // Final observation value
time_t lastTimeStamp :opt // Time of final observation
double max :opt // Highest value in the N observations
double min :opt // Lowest value in the N observations
string descriptor :opt
alarm_t alarm :opt
time_t timeStamp :opt

where:

274 Chapter 1. How this documentation is organized

EPICS Documentation

value
The summary statistic of the set of observations conveyed by this NTAggregate. For instance their arithmetic
mean.

N
The number of observations summarized by this NTAggregate.

dispersion
The extent to which the observations are centered around the value. For instance, if the value contains a mean,
then the dispersion may be the variance or the standard deviation. The descriptor should indicate which.

first
The value of the temporally first observation conveyed by this NTAggregate.

firstTimeStamp
The time of observation of the temporally first observation conveyed by this NTAggregate.

last
The value of the temporally final observation conveyed by this NTAggregate.

lastTimeStamp
The time of observation of the temporally final observation conveyed by this NTAggregate.

max
The numerically largest value in the set of observations conveyed by this NTAggregate.

min
The numerically smallest value in the set of observations conveyed by this NTAggregate.

Interpretation

One NTAggregate instance describes some number (given by N) of observations. If firstTimeStamp and lastTimeStamp
are given, then the N observations MUST have been taken over the period of time specified. If first, last, max or min
are given, they MUST refer to the actual values of the N observations being summarized.

The value field value computed by server agents may be the arithmetic mean of the observation data being summa-
rized by this NTAggregate, but NTAggregate does not normatively define that. Other measures of mean (geometric,
harmonic) may be assigned. Indeed other measures of central tendency may be used. The interpretation to give an
instance of an NTAggregate SHOULD be conveyed in the descriptor.

Where dispersion is a measure of the standard deviation, which estimator of the standard deviation [1/N or 1/(N-1)]
was used, is also not defined normatively.

1.18.11 Appendix A: Possible Future Additions to this Specification

NTUnion

NTUnion would be a Normative Type for interoperation of essentially any data structure, plus description, alarm and
timestamp fields.

NTUnion :=

structure
anyunion_t value
string descriptor :opt
alarm_t alarm :opt
time_t timeStamp :opt

1.18. EPICS V4 Normative Types 275

EPICS Documentation

NTScalarMultiChannel

NTScalarMultiChannel is an EPICS V4 Normative Type that aggregates an array of values from different EPICS Pro-
cess Variable (PV) channel sources of the same scalar type into a single variable.

Use cases: In a particle accelerator, a single NTScalarMultiChannel might include the data of a number of Beam
Position Monitors’ X offset values, or of a number of quadrupoles’ desired field values.

NTScalarMultiChannel :=

structure
scalar_t[] value // The channel values
string[] channelName // The channel names
string descriptor :opt
alarm_t alarm :opt
time_t timeStamp :opt
int[] severity :opt
int[] status :opt
string[] message :opt
long[] secondsPastEpoch :opt
int[] nanoseconds :opt
int[] userTag :opt

where:

value
The value from each channel.

channelName
The name of each channel.

alarm
The alarm associated with the NTScalarMultiChannel itself. severity, status, and message show the alarm
for each channel.

timeStamp
The timestamp associated with the NTScalarMultiChannel itself. secondsPastEpoch, nanoseconds and
userTag show the timestamp for each channel.

severity
The alarm severity associated with each channel.

status
The alarm status associated with each channel.

message
The alarm message associated with each channel.

secondsPastEpoch
The secondsPastEpoch field of the timestamp associated with each channel.

nanoseconds
The nanoseconds field of the timestamp associated with each channel.

userTag
The userTag field of the timestamp associated with each channel.

276 Chapter 1. How this documentation is organized

EPICS Documentation

1.18.12 Appendix B: Normative Type Identifiers

This Appendix describes the Normative Type Identifiers of the abstract data types defined by this document. These are
the strings which identify the type carried by a structure. In the pvAccess binding (which is at present the only one
implemented for EPICS V4), the type ID of the structure MUST carry one of these identifier strings. In doing so, the
structure instance declares itself to conform to the corresponding definition carried in this specification document.

The syntax of the Normative Type identifier is:

namespacename/typename:versionnumber

The Normative Type Identifier “Namespace Name” part, is:

epics:nt

The Normative Type Identifier “Type Name” and version number parts corresponding to this draft of the Normative
Types Document (this document), MUST be valued as following:

Table 2: Type Names that may be used in the Type Name part of a Nor-
mative Type Identifier of an EPICS V4 Normative Type in the namespace
of this draft of the Normative Types specification

Type
Name

Ver-
sion

Depends
on

Short Description

NTScalar 1.0 (none) A single scalar value.
NTScalarAr-
ray

1.0 (none) An array of scalar values of some single type.

NTEnum 1.0 (none) An enumeration list and a value of that enumeration.
NTMatrix 1.0 (none) A real number matrix.
NTURI 1.0 (none) A structure for encapsulating a Uniform Resource Identifier (URI).
NT-
NameValue

1.0 (none) An array of scalar values where each element is named.

NTTable 1.0 (none) A table of scalars, where each column may be of different scalar array type
NTAt-
tribute

1.0 (none) A key-value pair, with optional string tags, where the value is of any type.

NTMulti-
Channel

1.0 (none) An array of PV names, their values, and metadata.

NTNDAr-
ray

1.0 NTAt-
tribute
1.0

A pixel and metadata type, designed to encode a frame of data from detectors
and cameras.

NTContin-
uum

1.0 (none) Expresses a sequence of data points in time or frequency domain.

NTHis-
togram

1.0 (none) An array of real number intervals, and their frequency counts. Expresses a 1D
histogram.

NTAggre-
gate

1.0 (none) A mean value, standard deviation, and other metadata. Expresses the central
tendency and dispersion of a set of data points.

For example, the type ID of a structure describing an NTScalar, must be valued “epics:nt/NTScalar:1.0”. The type ID
of a structure describing an NTNDArray, must be valued “epics:nt/NTNDArray:1.0”.

Following drafts of this document MAY well correspond to the same Namespace Name and Type Names as used in
this draft. Also note that the same namespace may well be used for a different collection of types or Type Names, as
this document matures.

1.18. EPICS V4 Normative Types 277

EPICS Documentation

1.18.13 Bibliography

[bib:pvdata]
EPICS V4 Documentation page, Programmers’ Reference Documentation section (pvData).

[bib:pvaccess]
V4 Documentation page, Programmers’ Reference Documentation section (pvAccess).

[bib:epicsrecref]
EPICS Reference Manual, Philip Stanley, Janet Anderson, Marty Kraimer, APS, https://wiki-ext.aps.anl.gov/
epics/index.php/RRM_3-14.

[bib:epicsappdev]
EPICS Input / Output Controller (IOC) Application Developer’s Guide Marty Kraimer, APS, 1994, http://www.
aps.anl.gov/epics/base/R3-14/12-docs/AppDevGuide/.

bib:agg
Aggregate data, Wikipedia article, http://en.wikipedia.org/wiki/Aggregate_data.

bib:rdbservice
rdbService, example EPICS V4 service, https://github.com/epics-base/exampleJava/tree/master/src/services/
rdbService.

bib:uri
Uniform Resource Identifiers (URI): Generic Syntax, http://www.ietf.org/rfc/rfc2396.txt.

1.19 EPICS 7, pvAccess and pvData

Tags: developer advanced

pvAccess, pvData and other related modules have been introduced into EPICS to add support for structured data. Let
us look into the reasons, and also at some use cases for the capabilities to handle structured data.

EPICS has its roots in process control. In typical process control applications, process variables are scalar data items.
Transporting the process variables efficiently has priority over handling sophisticated constructs. Only a limited set of
data is sufficient to describe the process data: timestamp, alarm status, display information and engineering units. This
kind of simple interfaces make it possible to build general-purpose tools for manipulating the data, and also enables the
low-level units to interoperate without big overhead or having to customize the applications whenever a new structure
is introduced.

However, in more complex applications like data acquisition in scientific experiments, having only scalar values and
limited metadata becomes a limiting factor. For instance, when (camera) images are transported over the network, more
complex metadata is required to interpret and display the image; what are the dimensions of the picture in pixels, how
many data bits are required to present a single pixel, what is the encoding, and many other parameters.

Even further, when it is required to represent more abstract entities, single values or primitive waveforms are not suitable
for these tasks.

It is possible work around these limitations to some extent. One can define several process variables and combine these
in a higher-level application. This has been done in many packages, for instance in accelerator physics applications like
beam steering, by building an abstraction layer on top the simple process variables.

While workarounds are possible, they have many drawbacks. To begin with, it is very difficult to ensure interoperability
of applications that have been built in this way. The logic gets dispersed in various layers of the software stack and
applications cannot take advantage of what has been implemented in other parts of the system. For instance, an archiver
cannot store data entities that have been defined in a physics application, nor can a general-purpose GUI client display
them.

278 Chapter 1. How this documentation is organized

http://epics-pvdata.sourceforge.net/literature.html#pvDataJava
http://epics-pvdata.sourceforge.net/literature.html#pvAccessJava
https://wiki-ext.aps.anl.gov/epics/index.php/RRM_3-14
https://wiki-ext.aps.anl.gov/epics/index.php/RRM_3-14
https://wiki-ext.aps.anl.gov/epics/index.php/RRM_3-14
http://www.aps.anl.gov/epics/base/R3-14/12-docs/AppDevGuide/
http://www.aps.anl.gov/epics/base/R3-14/12-docs/AppDevGuide/
http://www.aps.anl.gov/epics/base/R3-14/12-docs/AppDevGuide/
http://en.wikipedia.org/wiki/Aggregate_data
https://github.com/epics-base/exampleJava/tree/master/src/services/rdbService
https://github.com/epics-base/exampleJava/tree/master/src/services/rdbService
http://www.ietf.org/rfc/rfc2396.txt

EPICS Documentation

Also, sharing of data is difficult, even between colleagues in the same organization or project, not even to talk about
making the data useful outside of the organization.

This situation leads to limited functionality and also every project has to build a set of site-specific applications from
scratch.

1.20 Overview of pvData implementation

pvData (Process Variable Data) is a part of the EPICS (7 and above) core software. It is a run-time type system with
serialization and introspection for handling of structured data. It implements the data management system to which the
other related components like pvAccess, pvDatabase, etc. interface.

pvData is conceptually somewhat similar to Google Protocol Buffers (PB, see [1]), however an important difference
is that pvData type and structure information is exchanged run-time, while PB depends on precompiled stubs on each
side.

pvData defines and implements an efficient way to store, access, and communicate memory resident data structures.
The following attributes describe the design goals of pvData:

• efficiency

– Small memory footprint, low CPU overhead, and concise code base.

• simple but powerful structure concept

– pvData has four types of data fields: scalar, scalarArray, structure, and structureArray. A scalar can be
one of the following scalar types: Boolean, Byte, Short, Int, Long, U(nsigned) Byte, Unsigned Short,
Unsigned Int, Unsigned Long, Float, Double, and String. A scalarArray is a one-dimensional array with
the element type being any of the scalar types. A structure is an ordered set of fields where each field
has a name and type. A structureArray is an array of similar structures. Since a field can be a structure,
complex structures can be created.

• structure and data storage separation

– pvData defines separate introspection and data interfaces. The introspection interfaces provide access to
immutable objects, which allows introspection instances to be freely shared. The introspection interface
for a process variable can be accessed without requiring access to the data.

• data transfer optimization

– The separation of introspection and data interfaces allows for efficient network data transfer. When a client
connects to a PV, introspection information is passed from server to client so that each side can create a
data instance. The payload data is transferred between these instances. The data that is transferred over
the network does not have to be self-describing since each side has the introspection information.

• data access standardization

– Client code can access pvData via the introspection and data interfaces. For “well known” data, e.g. image
data, specialized interfaces can be provided without requiring any changes to the core software. There
exists a separate definition of standard data types, called Normative Types. For example, a normative type
for image data is called NTNDArray.

• memory resident

– pvData only defines memory resident data.

pvData is intended for use by pvAccess client software, as an interface between client and network, or network and
server, as well as an interface between server and IOC database. Since it is a system-agnostic interface to data, it could
also be used by other systems and is easy to convert between different storage formats. A high-level physics application
can manipulate data as pvData structures, the data can made available to network clients by a pvAccess server like

1.20. Overview of pvData implementation 279

http://code.google.com/apis/protocolbuffers/

EPICS Documentation

qsrv that is included in an EPICS IOC to serve process variables, or some special-purpose server, serving for example
calibration data from a suitable data storage like a database.

1.21 PVData structure definition

This section describes pvData structures in a metalanguage. The metalanguage is used for documentation; there are
no parsers or a strict formal description. The metalanguage is used to describe both introspection interfaces and data
interfaces.

1.21.1 Definitions

PVData supports structured data. All data appears via top-level structures. A structure has an ordered set of fields
where each field is defined as follows:

type fieldName value // comment

where value is present for data objects and // indicates that the the rest of the line is a comment.

type is one of scalar, scalarArray, structure, or structureArray. These types are defined in more details in the
following paragraphs.

1.21.2 scalar

A scalar field can be of any of the following primitive types:

boolean

Has the value “true” or “false”.

byte

An 8 bit signed integer.

short

An 16 bit signed integer.

int

An 32 bit signed integer.

long

An 64 bit signed integer.

ubyte

An 8 bit unsigned integer.

ushort

An 16 bit unsigned integer.

uint

An 32 bit unsigned integer.

ulong

An 64 bit unsigned integer.

float

280 Chapter 1. How this documentation is organized

EPICS Documentation

A IEEE float.

double

A IEEE double.

string

An immutable string.

1.21.3 scalarArray

A scalarArray field is an array of any of the scalar types.

boolean[]

byte[]

short[]

int[]

long[]

ubyte[]

ushort[]

uint[]

ulong[]

float[]

double[]

string[]

1.21.4 structure

A structure field has the definition:

structure fieldName

fieldDef

. . .

or

xxx_t fieldName

// if data object then following appears

fieldDef

. . .

For structure fieldName each fieldDef must have a unique fieldName within the structure.

For “xxx_t fieldName”, xxx_t must be a previously defined structure of the form:

structure xxx_t . . .

1.21. PVData structure definition 281

EPICS Documentation

1.21.5 structureArray

A structureArray field has the definition:

structure[] fieldName structureDef . . .

or

xxx_t[] fieldName

Thus a structure array is an array where each element is a structure but all elements of the array have the same structure
and also the same introspection interface. For introspection the structureDef appears once without any data values.

The above is used to describe introspection objects. Data objects are described in a similar way but each scalar field
and each array field has data values. The definition of the data values depends on the type. For scalars the data value
is whatever is valid for the type.

boolean

The value must be true or false

byte,. . . ulong

Any valid integer or hex value, e.g. 3 and 0x0ff are valid values

float,double

Any valid integer or real e.g. 3, 3.0, and 3e0 are valid values

string

The value can be an alphanumeric value or any set of characters enclosed in “” Within quotes a quote is expressed as
\” Examples are aValue “a value” “a" xxx” are valid values.

For scalar arrays the syntax is:

= [value,. . . ,value]

where each value is a valid scalar data value depending on the type. Thus it is a comma separated set of values enclosed
in square brackets: [] White space is permitted surrounding each comma.

Examples

Having defined the following base structure:

structure timeStamp_t
long secondsPastEpoch
int nanoSeconds
int userTag

it can be used to define further structures:

structure scalarDoubleExample // introspection object
double value
timeStamp_t timeStamp

which would correspond to:

structure scalarDoubleExample
double value
structure timeStamp
long secondsPastEpoch

(continues on next page)

282 Chapter 1. How this documentation is organized

EPICS Documentation

(continued from previous page)

int nanoSeconds
int userTag

The following corresponding data object can then be defined:

structure scalarDoubleExample // data object
double value 1.0
timeStamp_t timeStamp
long secondsPastEpoch 1531389047
int nanoSeconds 247000000

Also, if the following interface is defined:

structure point_t
double x
double y

the following uses become possible (among others):

structure lineExample
point_t begin
point_t end

structure pointArrayExample
point_t[] points

filling in the details, they look like:

structure lineExample
structure begin
double x
double y

structure end
double x
double y

and

structure pointArrayExample
structure[] points
structure point
double x
double y

And the corresponding data objects could look like this:

structure lineExample
point_t begin
double x 0.0
double y 0.0

point_t end
double x 10.0
double y 10.0

(continues on next page)

1.21. PVData structure definition 283

EPICS Documentation

(continued from previous page)

structure pointArrayExample
point_t[] value
structure point
double x 0.0
double y 0.0

structure point
double x 10.0
double y 10.0

References:

1. Google Protocol Buffers: http://code.google.com/apis/protocolbuffers/

2. Normative Types Specification

1.22 IOC Access Security

Tags: developer advanced

Table of Contents

• IOC Access Security

– Features

∗ Limitations

∗ Definitions

– Quick Start

∗ Access Security Configuration File

∗ ascheck - Check Syntax of Access Configuration File

∗ IOC Access Security Initialization

– Database Configuration

∗ Access Security Group

∗ Subroutine Record Support

∗ Example:

∗ Summary of Functional Requirements

∗ Additional Requirements

∗ pvAccess (QSRV) Specific Features

284 Chapter 1. How this documentation is organized

http://code.google.com/apis/protocolbuffers/

EPICS Documentation

1.22.1 Features

Access security protects IOC databases from unauthorized Channel Access or pvAccess Clients. Access security is
based on the following:

Who
User id of the client(Channel Access/pvAccess).

Where
Host id where the user is logged on. This is the host on which the client exists. Thus no attempt is made to see
if a user is local or is remotely logged on to the host.

What
Individual fields of records are protected. Each record has a field containing the Access Security Group (ASG)
to which the record belongs. Each field has an access security level, either ASL0 or ASL1. The security level
is defined in the record definition file (.dbd). Thus the access security level for a field is the same for all record
instances of a record type.

When
Access rules can contain input links and calculations similar to the calculation record.

Limitations

An IOC database can be accessed only via pvAccess, Channel Access or the ioc (or vxWorks) shell. It is assumed
that access to the local IOC console is protected via physical security, and that network access is protected via normal
networking and physical security methods.

No attempt has been made to protect against the sophisticated saboteur. Network and physical security methods must
be used to limit access to the subnet on which the IOCs reside.

Definitions

This document uses the following terms:

ASL
Access Security Level.

ASG
Access Security Group

UAG
User Access Group

HAG
Host Access Group

1.22.2 Quick Start

In order to “turn on” access security for a particular IOC the following must be done:

• Create the access security file.

• IOC databases may have to be modified

– Record instances may have to have values assigned to field ASG. If ASG is null the record is in group
DEFAULT.

1.22. IOC Access Security 285

EPICS Documentation

– Access security files can be reloaded after iocInit via a subroutine record with asSubInit and asSubProcess
as the associated subroutines. Writing the value 1 to this record will cause a reload.

– The startup script must contain the following command before iocInit.

asSetFilename("/full/path/to/accessSecurityFile")

• The following is an optional command.

asSetSubstitutions("var1=sub1,var2=sub2,...")

The following rules decide if access security is turned on for an IOC:

• If asSetFilename is not executed before iocInit, access security will never be started.

• If asSetFile is given and any error occurs while first initializing access security, then all access to that ioc is
denied.

• If after successfully starting access security, an attempt is made to restart and an error occurs then the previous
access security configuration is maintained.

After an IOC has been booted with access security enabled, the access security rules can be changed by issuing the
asSetFilename, asSetSubstitutions, and asInit. The functions asInitialize, asInitFile, and asInitFP, which are described
below, can also be used.

Access Security Configuration File

This section describes the format of a file containing definitions of the user access groups, host access groups, and
access security groups. An IOC creates an access configuration database by reading an access configuration file (the
extension .acf is recommended). Lets first give a simple example and then a complete description of the syntax.

Simple Example

UAG(uag) {user1,user2}
HAG(hag) {host1,host2}
ASG(DEFAULT) {

RULE(1,READ)
RULE(1,WRITE) {

UAG(uag)
HAG(hag)

}
}

These rules provide read access to anyone located anywhere and write access to user1 and user2 if they are located at
host1 or host2.

286 Chapter 1. How this documentation is organized

EPICS Documentation

Syntax Definition

In the following description:

[] surrounds optional elements

| separates alternatives

. . . means that an arbitrary number of definitions may be given.

introduces a comment line

The elements <name>, <user>, <host>, <pvname> and <calculation> can be given as quoted or unquoted strings. The
rules for unquoted strings are the same as for database definitions.

UAG(<name>) [{ <user> [, <user> ...] }]
...
HAG(<name>) [{ <host> [, <host> ...] }]
...
ASG(<name>) [{

[INP<index>(<pvname>)
...]
RULE(<level>,NONE | READ | WRITE [, NOTRAPWRITE | TRAPWRITE]) {

[UAG(<name> [,<name> ...])]
[HAG(<name> [,<name> ...])]
CALC(<calculation>)

}
...

}]
...

Discussion

• UAG: User Access Group. This is a list of user names. The list may be empty. A user name may appear in
more than one UAG. To match, a user name must be identical to the user name read by the CA client library
running on the client machine. For vxWorks clients, the user name is usually taken from the user field of the
boot parameters.

• HAG: Host Access Group. This is a list of host names. It may be empty. The same host name can appear in
multiple HAGs. To match, a host name must match the host name read by the CA client library running on the
client machine; both names are converted to lower case before comparison however. For vxWorks clients, the
host name is usually taken from the target name of the boot parameters.

• ASG: An access security group. The group DEFAULT is a special case. If a member specifies a null group or a
group which has no ASG definition then the member is assigned to the group DEFAULT.

• INP<index>Index must have one of the values A to L. These are just like the INP fields of a calculation record.
It is necessary to define INP fields if a CALC field is defined in any RULE for the ASG.

• RULE This defines access permissions. <level> must be 0 or 1. Permission for a level 1 field implies permission
for level 0 fields. The permissions are NONE, READ, and WRITE. WRITE permission implies READ permis-
sion. The standard EPICS record types have all fields set to level 1 except for VAL, CMD (command), and RES
(reset). An optional argument specifies if writes should be trapped. See the section below on trapping Channel
Access writes for how this is used. If not given the default is NOTRAPWRITE.

– UAG specifies a list of user access groups that can have the access privilege. If UAG is not defined then
all users are allowed.

1.22. IOC Access Security 287

EPICS Documentation

– HAG specifies a list of host access groups that have the access privilege. If HAG is not defined then all
hosts are allowed.

– CALC is just like the CALC field of a calculation record except that the result must evaluate to TRUE or
FALSE. The rule only applies if the calculation result is TRUE, where the actual test for TRUE is (0.99
< result < 1.01). Anything else is regarded as FALSE and will cause the rule to be ignored. Assignment
statements are not permitted in CALC expressions here.

Each IOC record contains a field ASG, which specifies the name of the ASG to which the record belongs. If this field
is null or specifies a group which is not defined in the access security file then the record is placed in group DEFAULT.

The access privilege for a channel access client is determined as follows:

1. The ASG associated with the record is searched.

2. Each RULE is checked for the following:

1. The field’s level must be less than or equal to the level for this RULE.

2. If UAG is defined, the user must belong to one of the specified UAGs. If UAG is not defined all users are
accepted.

3. If HAG is defined, the user’s host must belong to one one of the HAGs. If HAG is not defined all hosts are
accepted.

4. If CALC is specified, the calculation must yield the value 1, i.e. TRUE. If any of the INP fields associated
with this calculation are in INVALID alarm severity the calculation is considered false. The actual test for
TRUE is .99 <result <1.01.

3. The maximum access allowed by step 2 is the access chosen.

Multiple RULEs can be defined for a given ASG, even RULEs with identical levels and access permissions. The
TRAPWRITE setting used for a client is determined by the first WRITE rule that passes the rule checks.

ascheck - Check Syntax of Access Configuration File

After creating or modifying an access configuration file it can be checked for syntax errors by issuing the command:

ascheck -S "xxx=yyy,..." < "filename"

This is a Unix command. It displays errors on stdout. If no errors are detected it prints nothing. Only syntax errors
not logic errors are detected. Thus it is still possible to get your self in trouble. The flag -S means a set of macro
substitutions may appear. This is just like the macro substitutions for dbLoadDatabase.

IOC Access Security Initialization

In order to have access security turned on during IOC initialization the following command must appear in the startup
file before iocInit is called:

asSetFilename("/full/path/to/access/security/file.acf")

If this command is not used then access security will not be started by iocInit. If an error occurs when iocInit calls
asInit than all access to the ioc is disabled, i.e. no channel access client will be able to access the ioc. Note that this
command does not read the file itself, it just saves the argument string for use later on, nor does it save the current
working directory, which is why the use of an absolute path-name for the file is recommended (a path name could
be specified relative to the current directory at the time when iocInit is run, but this is not recommended if the IOC
also loads the subroutine record support as a later reload of the file might happen after the current directory had been
changed).

288 Chapter 1. How this documentation is organized

EPICS Documentation

Access security also supports macro substitution just like dbLoadDatabase. The following command specifies the
desired substitutions:

asSetSubstitutions("var1=sub1,var2=sub2,...")

This command must be issued before iocInit.

After an IOC is initialized the access security database can be changed. The preferred way is via the subroutine record
described in the next section. It can also be changed by issuing the following command to the vxWorks shell:

asInit

It is also possible to reissue asSetFilename and/or asSetSubstitutions before asInit. If any error occurs during asInit the
old access security configuration is maintained. It is NOT permissible to call asInit before iocInit is called.

Restarting access security after ioc initialization is an expensive operation and should not be used as a regular procedure.

1.22.3 Database Configuration

Access Security Group

Each database record has a field ASG which holds a character string. Any database configuration tool can be used to
give a value to this field. If the ASG of a record is not defined or is not equal to a ASG in the configuration file then
the record is placed in DEFAULT.

Subroutine Record Support

Two subroutines, which can be attached to a subroutine record, are available (provided with iocCore):

asSubInit
asSubProcess

NOTE: These subroutines are automatically registered thus do NOT put a registrar definition in your database definition
file.

If a record is created that attaches to these routines, it can be used to force the IOC to load a new access configuration
database. To change the access configuration:

1. Modify the file specified by the last call to asSetFilename so that it contains the new configuration desired.

2. Write a 1 to the subroutine record VAL field. Note that this can be done via channel access.

The following action is taken:

1. When the value is found to be 1, asInit is called and the value set back to 0.

2. The record is treated as an asynchronous record. Completion occurs when the new access configuration has been
initialized or a time-out occurs. If initialization fails the record is placed into alarm with a severity determined
by BRSV.

1.22. IOC Access Security 289

EPICS Documentation

Record Type Description

Each field of each record type has an associated access security level of ASL0 or ASL1 (default value). Fields which
operators normally change are assigned ASL0, other fields are assigned ASL1. For example, the VAL field of an analog
output record is assigned ASL0 and all other fields ASL1. This is because only the VAL field should be modified during
normal operations.

Example:

Lets design a set of rules for a Linac. Assume the following:

1. Anyone can have read access to all fields at anytime.

2. Linac engineers, located in the injection control or control room, can have write access to most level 0 fields only
if the Linac is not in operational mode.

3. Operators, located in the injection control or control room, can have write access to most level 0 fields anytime.

4. The operations supervisor, linac supervisor, and the application developers can have write access to all fields but
must have some way of not changing something inadvertently.

5. Most records use the above rules but a few (high voltage power supplies, etc.) are placed under tighter control.
These will follow rules 1 and 4 but not 2 or 3.

6. IOC channel access clients always have level 1 write privilege.

Most Linac IOC records will not have the ASG field defined and will thus be placed in ASG DEFAULT. The following
records will have an ASG defined:

• LI:OPSTATE and any other records that need tighter control have ASG=”critical”. One such record could be a
subroutine record used to cause a new access configuration file to be loaded. LI:OPSTATE has the value (0,1) if
the Linac is (not operational, operational).

• LI:lev1permit has ASG=”permit”. In order for the opSup, linacSup, or an appDev to have write privilege to
everything this record must be set to the value 1.

The following access configuration satisfies the above rules.

UAG(op) {op1,op2,superguy}
UAG(opSup) {superguy}
UAG(linac) {waw,nassiri,grelick,berg,fuja,gsm}
UAG(linacSup) {gsm}
UAG(appDev) {nda,kko}
HAG(icr) {silver,phebos,gaea}
HAG(cr) {mars,hera,gold}
HAG(ioc) {ioclic1,ioclic2,ioclid1,ioclid2,ioclid3,ioclid4,ioclid5}
ASG(DEFAULT) {

INPA(LI:OPSTATE)
INPB(LI:lev1permit)
RULE(0,WRITE) {

UAG(op)
HAG(icr,cr)
CALC("A=1")

}
RULE(0,WRITE) {

UAG(op,linac,appdev)
HAG(icr,cr)

(continues on next page)

290 Chapter 1. How this documentation is organized

EPICS Documentation

(continued from previous page)

CALC("A=0")
}
RULE(1,WRITE) {

UAG(opSup,linacSup,appdev)
CALC("B=1")

}
RULE(1,READ)
RULE(1,WRITE) {

HAG(ioc)
}

}
ASG(permit) {

RULE(0,WRITE) {
UAG(opSup,linacSup,appDev)

}
RULE(1,READ)
RULE(1,WRITE) {

HAG(ioc)
}

}
ASG(critical) {

INPB(LI:lev1permit)
RULE(1,WRITE) {

UAG(opSup,linacSup,appdev)
CALC("B=1")

}
RULE(1,READ)
RULE(1,WRITE) {

HAG(ioc)
}

}

Summary of Functional Requirements

A brief summary of the Functional Requirements is:

1. Each field of each record type is assigned an access security level.

2. Each record instance is assigned to a unique access security group.

3. Each user is assigned to one or more user access groups.

4. Each node is assigned to a host access group.

5. For each access security group a set of access rules can be defined. Each rule specifies:

1. Access security level

2. READ or READ/WRITE access.

3. An optional list of User Access Groups or * meaning anyone.

4. An optional list of Host Access Groups or * meaning anywhere.

5. Conditions based on values of process variables

1.22. IOC Access Security 291

EPICS Documentation

Additional Requirements

Performance

Although the functional requirements do not mention it, a fundamental goal is performance. The design provides al-
most no overhead during normal database access and moderate overhead for the following: channel access client/server
connection, ioc initialization, a change in value of a process variable referenced by an access calculation, and dynam-
ically changing a records access control group. Dynamically changing the user access groups, host access groups, or
the rules, however, can be a time consuming operation. This is done, however, by a low priority IOC task and thus does
not impact normal ioc operation.

Generic Implementation

Access security should be implemented as a stand alone system, i.e. it should not be embedded tightly in database or
channel access.

No Access Security within an IOC

No access security is invoked within an IOC . This means that database links and local channel access clients calls are
not subject to access control. Also test routines such as dbgf should not be subject to access control.

Defaults

It must be possible to easily define default access rules.

Access Security is Optional

When an IOC is initialized, access security is optional.

pvAccess (QSRV) Specific Features

QSRV will enforce the access control policy loaded by the usual means (cf. asSetFilename()). This policy is applied
to both Single and Group PVs. With Group PVs, restrictions are not defined for the group, but rather for the individual
member records. The same policy will be applied regardless of how a record is accessed (individually, or through a
group).

Policy application differs from CA (RSRV) in several ways:

Client hostname is always the numeric IP address. HAG() entries must either contain numeric IP addresses, or as-
CheckClientIP=1 flag must be set to translate hostnames into IPs on ACF file load (effects CA server as well). This
prevents clients from trivially forging “hostname”. In additional to client usernames, UAG definitions may contained
items beginning with “role/” which are matched against the list of groups of which the client username is a member.
Username to group lookup is done internally to QSRV, and depends on IOC host authentication configuration. Note
that this is still based on the client provided username string.

UAG(special) {
someone, "role/op"

}

292 Chapter 1. How this documentation is organized

EPICS Documentation

The “special” UAG will match CA or PVA clients with the username “someone”. It will also match a PVA client if the
client provided username is a member of the “op” group (supported on POSIX targets and Windows).

1.23 How to Configure Channel Access

Tags: beginner user

1.23.1 Basic Operation, One IOC on same subnet

Assume an IOC has a record fred, and you want to use caget fred or a similar CA client to read it.

When starting out with one IOC on the network, things are simple:

CA clients will by default broadcast name search requests to UDP port 5064 on the subnet. As long as the IOC is running
on on any computer on that subnet, it should receive those search requests. Server and client will then establish a TCP
connection, and data is exchanged.

1.23.2 Multiple IOCs on different computers, but same subnet

If running multiple IOCs, each on their own computer, on the same subnet, the basic broadcast name search will still
succeed, no change necessary.

1.23.3 IOCs on different subnets

The default broadcast name search is limited to the subnet of the computer running the CA client. To reach IOCs on
one or more additional subnets, the environment variable EPICS_CA_ADDR_LIST needs to be configured. It can list
either the specific IP addresses of each IOC, or the broadcast address of their subnet. Note, however, that routers will
often not forward broadcast requests, which suggests using specific IP addresses.

1.23.4 Multiple IOCs on the same computer

When starting the first IOC on a computer, it will listen to name searches on UDP port 5064. When starting a second
IOC on the same computer, it will also listen to name searches on UDP port 5064. Due to limitations in most network
kernels, however, only the IOC started last will actually receive UDP search requests that are sent to that computer,
port 5064. As a workaround, you need to configure the EPICS_CA_ADDR_LIST to use the broadcast address of the
respective subnet.

Alternatively, you can automatically set up iptables rules that will circumvent the problem. (See How to Make Channel
Access Reach Multiple Soft IOCs on a Linux Host.)

1.23. How to Configure Channel Access 293

EPICS Documentation

1.23.5 Multiple IOCs on the same computer but on a different subnet

Combining the last two points results in a problem: To reach multiple IOCs on the same computer,
EPICS_CA_ADDR_LIST must be set to the broadcast address of that computer’s subnet. If the IOCs’ subnet is different
from the CA client’s subnet however, the broadcast search packets will not usually be forwarded by the intermediate
network routers.

There are several options to solve this:

Channel Access Gateway

The PV gateway, running on the subnet that has the desired IOCs, will use the broadcast address of that subnet in its
EPICS_CA_ADDR_LIST, so it can reach all IOCs, including multiple IOCs running on the same computer, throughout
that subnet. A CA client on a different subnet uses only EPICS_CA_ADDR_LIST=ip-of-the-gateway to directly
reach the gateway, which is possible via routers.

In addition to establishing the basic connectivity, the gateway also offers IOC load reduction and it can add access
security, for example limit write access.

CA Nameserver

You can run a CA Name Server in the GUI subnet which knows about the IOCs and responds to search requests; in this
case you would not set the EPICS_CA_ADDR_LIST variables. This is almost equivalent to running a CA Gateway, but
is slightly more robust because if the Nameserver process dies it wouldn’t kill any existing connections.

UDP Broadcast Packet Relay

If you have access to a machine with a network interface on both subnets you can run a program on it called UDP
Broadcast Packet Relay to forward UDP broadcast packets between the subnets. For best performance you should run
it twice, once for port 5064 and again for 5065. The first one will forward CA search requests between the subnets,
while the second redistributes CA beacons which help channels reconnect faster after an IOC has been turned off for
some time.

1.23.6 Firewalls

Firewalls may need to be configured to pass UDP and TCP traffic on both ports 5064 and 5065.

The Channel Access Reference Manual provides a lot more detail.

1.24 How to find which IOC provides a PV

Tags: beginner user developer

This process is for IOCs running on Linux servers.

294 Chapter 1. How this documentation is organized

https://www.joachim-breitner.de/udp-broadcast-relay/
https://www.joachim-breitner.de/udp-broadcast-relay/
https://epics.anl.gov/base/R7-0/7-docs/CAref.html

EPICS Documentation

1.24.1 Find Host and TCP port

The cainfo command will tell you which host is serving a particular PV, and which TCP port number on that host is
used.

$ cainfo LN-TS{EVR:1A-SFP}Pwr:RX-I
LN-TS{EVR:1A-SFP}Pwr:RX-I
State: connected
Host: 10.0.152.111:5064
Access: read, write
Native data type: DBF_DOUBLE
Request type: DBR_DOUBLE
Element count: 1

Here we see that the PV “LN-TS{EVR:1A-SFP}Pwr:RX-I” is served from port number 5064 of 10.0.152.111.

$ cainfo LN-RF{AMP:1}Amp-Sts
LN-RF{AMP:1}Amp-Sts
State: connected
Host: linacioc01.cs.nsls2.local:36349
Access: read, write
Native data type: DBF_ENUM
Request type: DBR_ENUM
Element count: 1

Here is another example where the hostname is shown instead of an IP address. Also this server has more than one
IOC, and the one in question is using port 36349.

1.24.2 Find which process is using a TCP port (Linux only)

Super-user (root) permission is required to find which Linux process is bound to a particular TCP port.

To continue the example from above. On the server linacioc01.cs.nsls2.local we run:

$ sudo netstat -tlpn | grep 36349
tcp 0 0 0.0.0.0:36349 0.0.0.0:* LISTEN 4627/
→˓s7ioc

This tells us that TCP port 36349 is bound by process ID (PID) 4627, which has the process name of ‘s7ioc’.

1.24.3 Find information about a process (Linux only)

The ps command can give some information, including the command used to start the process. This often contains
enough information to identify where the IOC’s files can be found.

$ ps aux|grep 4627
softioc 4627 1.5 0.0 93748 6616 pts/23 Ssl+ Jan07 744:18 ../../bin/linux-x86/
→˓s7ioc /epics/iocs/RF-CONTROL/iocBoot/iocrf-control/st.cmd

There are several pieces of information available under /proc which are useful. The entry /proc/<pid>/cwd is a
symbolic link to the current working directory of the process. There is also /proc/<pid>/exe which links to the
executable.

1.24. How to find which IOC provides a PV 295

EPICS Documentation

$ sudo ls -l /proc/4627/cwd
lrwxrwxrwx 1 softioc softioc 0 Feb 10 11:49 /proc/4627/cwd -> /epics/iocs/RF-CONTROL
$ sudo ls -l /proc/4627/exe
lrwxrwxrwx 1 softioc softioc 0 Jan 7 09:58 /proc/4627/exe -> /epics/iocs/RF-CONTROL/bin/
→˓linux-x86/s7ioc

1.24.4 Additional: Finding the procServ/screen running an IOC (Linux only)

The ps command can also tell us the PID of the parent of the IOC process. The techniques of step 3 can also be applied
to the parent.

$ ps -eo pid,ppid,user,cmd|grep 4627
4627 4566 softioc ../../bin/linux-x86/s7ioc /epics/iocs/RF-CONTROL/iocBoot/iocrf-
→˓control/st.cmd

The parent PID in the second column is 4566.

$ ps aux|grep 4566
softioc 4566 0.0 0.0 3452 592 ? Ss Jan07 2:18 /usr/bin/procServ -q -c␣
→˓/epics/iocs/RF-CONTROL/iocBoot/iocrf-control -i ^D^C^] -p /var/run/softioc-RF-CONTROL.
→˓pid -n RF-CONTROL --restrict --logfile=/var/log/softioc-RF-CONTROL.log 4057 /epics/
→˓iocs/RF-CONTROL/iocBoot/iocrf-control/st.cmd

And to complete the circle, and get access to the IOC console, we find which TCP port this procServ instance is bound
to.

$ sudo netstat -tlpn|grep 4566
tcp 0 0 127.0.0.1:4057 0.0.0.0:* LISTEN 4566/
→˓procServ
$ telnet localhost 4057
epics> dbpr LN-RF{AMP:1}Amp-Sts
ASG: DESC: Ampl.500 MHz E-Source DISA: 0
DISP: 0 DISV: 1 NAME: LN-RF{AMP:1}Amp-Sts
RVAL: 16 SEVR: NO_ALARM STAT: NO_ALARM SVAL: 0
TPRO: 0 VAL: 1

296 Chapter 1. How this documentation is organized

EPICS Documentation

1.25 How to Make Channel Access Reach Multiple Soft IOCs on a
Linux Host

Tags: developer advanced

1.25.1 UDP Name Resolution: Broadcast vs. Unicast

Running multiple IOCs on one host has an annoying side effect: Clients that are using that host’s IP address in their
EPICS_CA_ADDR_LIST with EPICS_CA_AUTO_ADDR_LIST=NO will only reach one of the IOCs – usually the one that
was started last. All clients have to use broadcasts to reach all IOCs.

The same is true for CA Gateway machines that are set up in a way that makes multiple Gateway processes serve
channels into the same network.

The reason is that the kernel delivers UDP broadcasts to all processes that are listening to the IP port, while UDP
unicast messages will only be delivered to one of those processes.

1.25.2 Fix Using iptables

Here’s a little helper (for Linux hosts) that I recently was playing around with – based on an idea by Rodrigo Bongers
(CNPEM, Brazil).

If you drop the right script in the right place (depending on your Linux distribution, see further down), it will auto-
matically create/delete an iptables rule that replaces the destination address of all incoming CA UDP traffic on each
interface with the broadcast address of that interface.

A simple and effective trick: the kernel will see all incoming name resolution requests as broadcasts, and delivers them
to all IOCs instead of one.

Note: This will not work for clients on the same host. (Adding that feature makes things a lot more complicated, and I
like things to be simple.)

If you need connections between IOCs on one host, I would suggest adding the broadcast address of the loopback
interface (usually 127.255.255.255) to each IOC’s EPICS_CA_ADDR_LIST setting.

On Debian and Derivatives

Drop/link the following script into /etc/network/if-up.d/ and /etc/network/if-down.d/. If your system does
not have the ip command, consider updating it (or install package iproute2 from backports).

#!/bin/sh -e
Called when an interface goes up / down

Author: Ralph Lange <Ralph.Lange@gmx.de>

Make any incoming Channel Access name resolution queries go to the broadcast address
(to hit all IOCs on this host)

Change this if you run CA on a non-standard port
PORT=5064

["$METHOD" != "none"] || exit 0
["$IFACE" != "lo"] || exit 0

(continues on next page)

1.25. How to Make Channel Access Reach Multiple Soft IOCs on a Linux Host 297

EPICS Documentation

(continued from previous page)

line=`ip addr show $IFACE`
addr=`echo $line | grep -Po 'inet \K[\d.]+'`
bcast=`echo $line | grep -Po 'brd \K[\d.]+'`
[-z "$addr" -o -z "$bcast"] && return 1

if ["$MODE" = "start"]
then

iptables -t nat -A PREROUTING -d $addr -p udp --dport $PORT -j DNAT --to-destination
→˓$bcast
elif ["$MODE" = "stop"]
then

iptables -t nat -D PREROUTING -d $addr -p udp --dport $PORT -j DNAT --to-destination
→˓$bcast
fi

exit 0

On RedHat and Derivatives

On systems using NetworkManager, drop the script below into /etc/NetworkManager/dispatcher.d/. The rules
for these files are:

NetworkManager will execute scripts in the /etc/NetworkManager/dispatcher.d directory in alphabetical
order in response to network events. Each script should be (a) a regular file, (b) owned by root, (c) not
writable by group or other, (d) not set-uid, (e) and executable by the owner. Each script receives two
arguments, the first being the interface name of the device just activated, and second an action.

#!/bin/sh -e
Called when an interface goes up / down

Author: Ralph Lange <Ralph.Lange@gmx.de>

Make any incoming Channel Access name resolution queries go to the broadcast address
(to hit all IOCs on this host)

Change this if you run CA on a non-standard port
PORT=5064

IFACE=$1
MODE=$2

["$IFACE" != "lo"] || exit 0

line=`/sbin/ip addr show $IFACE`
addr=`echo $line | grep -Po 'inet \K[\d.]+'`
bcast=`echo $line | grep -Po 'brd \K[\d.]+'`

[-z "$addr" -o -z "$bcast"] && return 1

if ["$MODE" = "up"]
(continues on next page)

298 Chapter 1. How this documentation is organized

EPICS Documentation

(continued from previous page)

then
/sbin/iptables -t nat -A PREROUTING -d $addr -p udp --dport $PORT -j DNAT --to-

→˓destination $bcast
elif ["$MODE" = "down"]
then

/sbin/iptables -t nat -D PREROUTING -d $addr -p udp --dport $PORT -j DNAT --to-
→˓destination $bcast
fi

exit 0

Enjoy!
Ralph

1.26 How to Set Up a Soft IOC Framework on Linux

This evolved from my notes when doing this for the soft IOCs at BESSY. Please add or correct things as you find them
wrong or out-of-date.

The following instructions are based on our Debian Linux machines. (Which version? I don’t really care. Too stable,
I guess.) Other distributions (or other Unixes) might have different commands and different places for things. This
is especially true for the Debian /etc/init.d script I’m attaching to this page. If you create a different script for a
different distribution, please add it to this page. Others will be able to use it. The general steps will be the same on all
distributions, though.

Knowledge of general system administration tasks (creating user accounts etc.) is assumed.

I was giving a talk on Administration of Soft IOCs under Linux at the EPICS Collaboration Meeting in April 2007 that
partly covered this issue.

1.26.1 Introduction

Why are we doing this?

When using soft IOCs in production, they should be treated as important system services:

• Soft IOCs should be started and stopped by the system.

• There should be a fallback system you can easily switch over to in case of hardware failures.

Other objectives were: In the same way as for VME IOCs, the application developer should be able to reset the soft
IOC without needing root access to the host.

• The IOC application developer should be able to start and stop IOCs manually.

When multiple soft IOCs share the same host (and the same IP address), Channel Access can not tell them apart. Access
Security will not be able to distiguish between CA connections coming from different soft IOCs. When debugging CA
clients, CA will not be able to tell you which of the soft IOCs a connection goes to.

• Channel Access should be able to distinguish between different soft IOCs, even if they are hosted on the same
machine.

I was considering using a virtualization layer (based on VMware) to allow running soft IOCs in an encapsulated en-
vironment. I found the effort too high, the layer too thick, and the expected performance hit too hard – only to get a
separate IP address for each soft IOC.

1.26. How to Set Up a Soft IOC Framework on Linux 299

ftp://ftp.desy.de/pub/EPICS/meeting-2007/SoftIOC_Admin.pdf
http://epics.desy.de/content/e2/e127/index_eng.html

EPICS Documentation

When debugging and/or trying to look what is happening on an IOC, the developer does not necessarily know if the
database is running on a VME based or on a host based soft IOC.

• Console access (and logging console output) should be uniform: working the same way for soft as for VME
IOCs.

The setup necessary to achieve this is described in the document How to Set Up Console Access and Logging for VME
and Soft IOCs.

Concept

To allow Access Security telling the soft IOCs apart, they are run under separate user names.

The procServ utility will be used as an environment that allows to start soft IOCs in the background and connect to their
consoles later, much like the serial consoles of VME IOCs. (See the procServ link on the Extensions Page. Formerly,
the screen facility was used, but reported problems, e.g. IOCs hanging up after console access, made us change to
something less complex.)

Attaching to a soft IOC console will be done through ssh, using a special console access key. Ssh is set up with the
matching telnet commands that reattach to the soft IOCs. Opening an ssh connection using the console access key
to the user ioc123 on the soft IOC host will immediately attach to the console of the soft IOC named ioc123 (that is
running as user ioc123).

1.26.2 Setting up Your Machine

Create User Accounts and ssh Access

Soft IOC Administrator Account

Create a generic user account that application developers will use to start/stop soft IOCs. (We call it iocadm.)

Put the public ssh keys of the application developers into ~/.ssh/authorized_keys of iocadm.

ssh Key Pairs

As iocadm, create one key pair for this user, and another key pair for console access.

Soft IOCs

Create one user account for each soft IOC you intend to host. User name should be the IOC name, the group is not
really important. (Maybe create a group iocs that you put all of them into?)

Into each of the ~/.ssh/authorized_keys files, put two public keys:

1. The public ssh key of iocadm.

2. The public ssh key for console access.

In front of the console access key, put the telnet command to reattach to the soft IOC console. For a user/IOC ioc123
that provides console access on port 24703, the line should look like this:

command="telnet localhost 24703" ssh-rsa AAAAB3NzaC1yc2EAAAA.....

300 Chapter 1. How this documentation is organized

https://epics-controls.org/resources-and-support/extensions/

EPICS Documentation

Configure the sudo Facility

Allow the iocadm User to Start and Stop Soft IOCs

On the soft IOC host, allow iocadm to use sudo to execute commands as any of the soft IOC users. /etc/sudoers
should have a line like:

iocadm ALL = (ioc123, ioc124, ioc125) NOPASSWD: ALL

Setup the Start/Stop script

Create the /etc/init.d script

I’m attaching the script that we’re using as /etc/init.d/softIOC. It got quite huge and complex – sorry!. It has
been modelled after Debian’s skeleton scripts, you should probably adapt it to match the standards that your distribution
implies.

It contains the local settings for where to find things, routines to read in the configuration file, the code necessary
to start/stop a soft IOC as a different user under procServ, and the usual init.d script stuff that checks command line
arguments and calls the other routines.

If you have a script working for a different distribution, please add it to this page, as it could make life easier for others!

Create the Configuration File

The configuration file contains a section for each of the soft IOCs. A section starts with the IOC name followed by a
colon, and ends with an empty line.

Within a section you can set special variables used by the softIOC script as well as environment variables that will be
set for the soft IOC.

The special section global: contains settings that will be applied to all soft IOCs (may be overridden by the IOC
section).

The special line auto: contains the names of the soft IOCs that should be started when the script is run as part of the
system boot-up process.

Section and IOC names are not case sensitive.

So a minimal configuration file could look like this (remember the empty line that is required after each section):

AUTO: ioc123

GLOBAL:

ioc123:

ioc124:

ioc125:

1.26. How to Set Up a Soft IOC Framework on Linux 301

EPICS Documentation

Distribute the Required Stuff to the Soft IOC Host

EPICS Base

Soft IOCS will need libraries from EPICS base. Make sure these are existing and can be found.

Code and Databases

Add the soft IOC host to the code deployment scheme you are using. The soft IOC binaries, databases, and start up
scripts must be available for the soft IOCs to be started.

1.26.3 Start Your Soft IOCs

Start the IOCs using the startup script

Starting and stopping the soft IOCs should work now! Ssh to the soft IOC host as iocadm and try calling the startup
script:

/etc/init.d/softIOC start ioc123

Watch them run

Ssh to the soft IOC host using the console access key and see if you can get access to the IOC console:

ssh -i ~iocadm/.ssh/console_access -t ioc123@iochost

You should be directly connected to your IOC’s console.

Check if Starting IOCs at reboot works

If you made entries to the auto: section, reboot the machine to check that starting IOCs at boot time works.

Good luck!

Ralph Lange (BESSY)

1.26.4 The Startup Script

/etc/init.d/softIOC script for Debian Linux

#! /bin/sh
Author: <Ralph.Lange@bessy.de>
#
History:
2006-03-12: Adapted from D. HerrendÃ¶rfer's ca-gateway script
2006-04-04: Bugfix in config file parser
2008-05-20: Adapted to procServ

(continues on next page)

302 Chapter 1. How this documentation is organized

mailto:Ralph.Lange_at_bessy.de

EPICS Documentation

(continued from previous page)

Do NOT "set -e"

!! This script is located on a mounted file system
!! It must be run after the mountnfs.sh script

PATH=/sbin:/usr/sbin:/bin:/usr/bin
DESC="EPICS soft IOCs"
SCRIPTNAME=/etc/init.d/softIOC
HOST=`uname -n`

PROCSERV=/usr/local/bin/procServ
CONFFILE=/opt/IOC/softIOC/softiocs.$HOST
HOMEDIRS=/home/controls

Check for config file
if [! -r $CONFFILE]
then

echo "Error: Can't find configuration file $CONFFILE!"
exit 1

fi

#
Functions that read in the configuration file
#
clear_options()
{

for option in "CA_AUTO" "CA_ADDR" "CA_PORT" "IOC_USER" "PORT"
do

unset $option;
done

}

evaluate_options()
{

while [$# != 0]
do

TAG=`echo $1 | tr [:lower:] [:upper:]`
case "$TAG" in
"#") ;;
"CA_AUTO" | "CA_ADDR" | "CA_PORT" | "COREDUMPSIZE" | \
"HOMEDIR" | "BOOTDIR" | "IOC_USER" | "PORT")

Test the presence of values for the current option
OPTION=$TAG
shift
if [-z $TAG -o $TAG = "#"]
then

echo "$CONFFILE: Value(s) required for $TAG.";
exit 1

else
VALUE=$1

(continues on next page)

1.26. How to Set Up a Soft IOC Framework on Linux 303

EPICS Documentation

(continued from previous page)

shift
fi
If more values follow assign them too
while [$1 != '#' -a $# != 0]
do

VALUE="$VALUE $1"
shift;

done
eval ${OPTION}=\$VALUE
;;

*) echo "$CONFFILE: Unknown option $1."
exit 1

esac
shift

done
}

default_options()
{

Set IOC defaults for options
(may be overridden in config file)
IOC_LC=$1
IOC_UC=`echo $1 | tr [:lower:] [:upper:]`

if [["$IOC_LC" = "mdi"*]]
then
TOP=DiagR3.14.9.0.1-Tornado2.2.1

elif [["$IOC_LC" = *"p"]]
then
TOP=MLS-Controls

else
TOP=BII-Controls/base-3-14

fi

BOOTDIR=/opt/IOC/$TOP/boot/$IOC_UC
HOMEDIR=$HOMEDIRS/$IOC_LC
PIDFILE=$HOMEDIR/$IOC_LC.pid
ENVFILE=$HOMEDIR/$IOC_LC.env
IOC_USER=$IOC_LC

}

assign_options()
{

Find $TAG section
Remove comments
Remove leading and trailing whitespace
Remove $TAG: tag
Join lines ending with a "\"
Mark end of option with a "#"
Remove unnecessary whitespace
TAG=$1
SECTION=`sed -n "/^$TAG:/I,/^[\t]*$/p" $CONFFILE | \

(continues on next page)

304 Chapter 1. How this documentation is organized

EPICS Documentation

(continued from previous page)

sed -n '/^[^#]/p' | \
sed -e 's/^[\t]*//' -e 's/[\t]*$//' \

-e "s/$TAG://I" \
-e :a -e '/\\\\$/N; s/\\\\\\n//; ta' \
-e 's/$/ \#/' \
-e 's/[\t]/ /g'`

evaluate_options $SECTION
}

get_iocs()
{

Get IOCs from command line or AUTO: entry in configuration file
Test for matching section in configuration file
if [$# = 0]
then

TEST_LIST=`grep -i '^AUTO:' "$CONFFILE" | cut -d: -f2- | tr [:upper:]␣
→˓[:lower:]`

else
TEST_LIST="$@"

fi

CHECKED_LIST=""
for IOC in $TEST_LIST
do

grep -qi "^$IOC:" $CONFFILE
if [$? = 0]
then

CHECKED_LIST="$CHECKED_LIST $IOC"
fi

done
echo $CHECKED_LIST

}

set_cmdenvopts()
{

Set up the environment setup string

SETENV="LINES=60 "`test ! -z "$CA_AUTO" && echo "export EPICS_CA_AUTO_ADDR_LIST=\
→˓"$CA_AUTO\";"`

SETENV="$SETENV "`test ! -z "$CA_ADDR" && echo "export EPICS_CA_ADDR_LIST=\"$CA_
→˓ADDR\";"`

SETENV="$SETENV "`test ! -z "$CA_PORT" && echo "export EPICS_CA_SERVER_PORT=\"
→˓$CA_PORT\";"`

SETENV="$SETENV "`test ! -z "$BOOTDIR" && echo "export BOOTDIR=\"$BOOTDIR\";"`

Set up the options for the procserv program

PROCSERVOPTS=`test ! -z "$IOC_USER" && echo "-n \"$IOC_USER\""`
PROCSERVOPTS="$PROCSERVOPTS "`test ! -z "$COREDUMPSIZE" && echo "--coresize \"

→˓$COREDUMPSIZE\""`
PROCSERVOPTS="$PROCSERVOPTS -q -c $BOOTDIR -p $PIDFILE -i ^D^C^] $PORT"

}

(continues on next page)

1.26. How to Set Up a Soft IOC Framework on Linux 305

EPICS Documentation

(continued from previous page)

#
Function that starts the daemon/service
#
do_start()
{

Return
0 if daemon has been started
1 if daemon was already running
2 if daemon could not be started
Add code here, if necessary, that waits for the process to be ready
to handle requests from services started subsequently which depend
on this one. As a last resort, sleep for some time.

echo -n "Starting soft IOCs ... "
MYIOCS=`get_iocs $@`
["$MYIOCS" = ""] && echo -n "<none> "
for IOC in $MYIOCS
do

echo -n "$IOC "
clear_options
default_options "$IOC"
assign_options "GLOBAL"
assign_options "$IOC"
set_cmdenvopts

if [-d $BOOTDIR]
then
if [-d $HOMEDIR]

then

sudo -H -u $IOC sh -c "$SETENV (env > $ENVFILE; /sbin/start-stop-
→˓daemon --start --quiet --chdir $BOOTDIR \

--pidfile $PIDFILE --startas $PROCSERV --name procServ --
→˓test > /dev/null)"

if ["$?" = 1]
then
echo -n "<was running> "
else
sudo -H -u $IOC sh -c "$SETENV (env > $ENVFILE; /sbin/start-

→˓stop-daemon --start --quiet --chdir $BOOTDIR \
--pidfile $PIDFILE --startas $PROCSERV --name procServ --

→˓ $PROCSERVOPTS ./st.cmd)"
if ["$?" = 1]

then
echo -n "<failed> "

fi
fi

else
echo -e "\nWarning: Home directory $HOMEDIR does not exist!␣

→˓Ignoring $IOC"

(continues on next page)

306 Chapter 1. How this documentation is organized

EPICS Documentation

(continued from previous page)

fi
else

echo -e "\nWarning: Boot directory $BOOTDIR does not exist!␣
→˓Ignoring $IOC"

fi
done
echo "... done."

}

#
Function that stops the daemon/service
#
do_stop()
{

Return
0 if daemon has been stopped
1 if daemon was already stopped
2 if daemon could not be stopped
other if a failure occurred

echo -n "Stopping soft IOCs ... "
MYIOCS=`get_iocs $@`
["$MYIOCS" = ""] && echo -n "<none> "
for IOC in $MYIOCS
do

echo -n "$IOC "
clear_options
default_options "$IOC"
assign_options "GLOBAL"
assign_options "$IOC"
set_cmdenvopts

sudo -H -u $IOC sh -c "/sbin/start-stop-daemon --stop --quiet --pidfile
→˓$PIDFILE --name procServ --test > /dev/null"

if [$? = 1]
then
echo -n "<not running> "
else
sudo -H -u $IOC sh -c "/sbin/start-stop-daemon --stop --quiet --

→˓retry=TERM/30/KILL/5 --pidfile $PIDFILE --name procServ"
if [$? = 1]

then
echo -n "<failed> "

else
sudo -H -u $IOC sh -c "rm -f $PIDFILE"

fi
fi

done
echo "... done."

}

#

(continues on next page)

1.26. How to Set Up a Soft IOC Framework on Linux 307

EPICS Documentation

(continued from previous page)

Function that sends a SIGHUP to the daemon/service
#
do_reload() {

#
If the daemon can reload its configuration without
restarting (for example, when it is sent a SIGHUP),
then implement that here.
#

start-stop-daemon --stop --signal 1 --quiet --pidfile $PIDFILE --name $NAME
return 0

echo "Restarting soft IOCs ... "
STARTDIR=$PWD
IOCS=`get_iocs $@`
["$IOCS" = ""] && echo -n "<none> "
for IOC in $IOCS
do

echo -n "$IOC "
clear_options
default_options "$IOC"
assign_options "GLOBAL"
assign_options "$IOC"
if [-d $BOOTDIR]
then

cd "$BOOTDIR"
restart it!

echo -e "\ndebug: Reloading ioc $IOC"
cd "$STARTDIR"

else
echo -e "\nWarning: Boot directory $BOOTDIR does not exist!␣

→˓Entry for $NET ignored!"
fi

done
echo "... done."

}

COMMAND=$1
shift
IOCS=`echo $@ | tr [:upper:] [:lower:]`

case "$COMMAND" in
start)

do_start $IOCS
;;

stop)
do_stop $IOCS
;;

#reload|force-reload)
#
If do_reload() is not implemented then leave this commented out
and leave 'force-reload' as an alias for 'restart'.

(continues on next page)

308 Chapter 1. How this documentation is organized

EPICS Documentation

(continued from previous page)

#
#log_daemon_msg "Reloading $DESC" "$NAME"
#do_reload
#log_end_msg $?
#;;

restart|force-reload)
#
If the "reload" option is implemented then remove the
'force-reload' alias
#
do_stop $IOCS
sleep 1
do_start $IOCS
;;

*)
#echo "Usage: $SCRIPTNAME {start|stop|restart|reload|force-reload}" >&2
echo "Usage: $SCRIPTNAME {start|stop|restart|force-reload} [iocs ...]" >&2
exit 3
;;

esac

1.27 How to Set Up Console Access and Logging for VME and Soft
IOCs

This evolved from my notes when doing this for the IOCs at BESSY. Please add or correct things as you find them wrong
or out-of-date.

The following instructions are based on our Debian Linux machines. (Which version? I don’t remember. Too stable,
I guess.) Other distributions (or other Unixes) might have slightly different commands and different places for things.
The general steps will be the same on all distributions, though.

Knowledge of general system administration tasks (creating user accounts, using ssh, rsync etc.) is assumed.

I was giving a talk on Administration of Soft IOCs under Linux at the EPICS Collaboration Meeting in April 2007 that
partly covered this issue.

1.27.1 Introduction

Why are we doing this?

When debugging and/or trying to look what is happening on an IOC, the developer does not necessarily know if the
database is running on a VME based or on a host based soft IOC.

• Console access (and logging console output) should be uniform: working the same way for soft as for VME
IOCs.

• Connecting to a console should be easy. It should not require intimate knowledge of the system structure, the
name of the IOC should be all that is needed for connecting to its console.

• Multiple users should be able to log onto the same console. Only one of those should be granted write access.
Forcing to take over write access must be possible, so that no one is able to block a console by not logging off.

• Viewing log files should be as easy as pointing your browser to a certain URL.

1.27. How to Set Up Console Access and Logging for VME and Soft IOCs 309

ftp://ftp.desy.de/pub/EPICS/meeting-2007/SoftIOC_Admin.pdf
http://epics.desy.de/content/e2/e127/index_eng.html

EPICS Documentation

Conserver

Conserver is a free software that does provide all of the functionality needed plus a lot more things.

From its docs:

Conserver is an application that allows multiple users to watch a serial console at the same time. It can log
the data, allows users to take write-access of a console (one at a time), and has a variety of bells and whistles
to accentuate that basic functionality. The idea is that conserver will log all your serial traffic so you can
go back and review why something crashed, look at changes (if done on the console), or tie the console
logs into a monitoring system (just watch the logfiles it creates). With multi-user capabilities you can work
on equipment with others, mentor, train, etc. It also does all that client-server stuff so that, assuming you
have a network connection, you can interact with any of the equipment from home or wherever.

I will describe a setup consisting of multiple conserver hosts, connect to a set of VME based IOCs (through telnet to
terminal servers) and soft IOCs (through ssh). Setting up your soft IOCs to be accessed through ssh is described in the
document How to Set Up a Soft IOC Framework on Linux.

Multiple Server Setup

Conserver supports running multiple servers, that are aware of the lists of consoles each of the member serves. A
conserver-client can ask any of the server nodes for a console, the server will automatically redirect the request to the
appropriate server node.

Main advantage: client machines never need any re-configuration, if consoles are moved between servers or additional
consoles are added to the system. They have to know the name of console they want to attach to and one of the servers
(preferably through a DNS alias name) - that’s it.

1.27.2 Setting up Your Machines

Get conserver

The machines intended to run conserver (i.e. the nodes that connect to consoles, provide console access, and log
console output), need the conserver-server package installed.

The machines intended to be clients (i.e. the nodes where the console application can be run), need the conserver-client
package installed.

Configure the Conserver Servers

Conserver’s configuration files use a straightforward configuration languange with lots of different options and very
few structures. (See man conserver.cf for more details.)

It’s a bit like configuring bootp or dhcp: The most important structure is a define command for aliases, that allow
inclusion of other defines, adding or overriding parameters. Using a smart set of those definitions, the actual entries
for the consoles can be quite short.

310 Chapter 1. How this documentation is organized

http://www.conserver.com

EPICS Documentation

Shared vs. Local Configuration

To allow multiple servers to share the same configuration, the #include directive is used to add by-host configuration.
For each of the servers, a separate configuration file is created for keeping the local configuration. The matching local
configuration file is soft-linked to the generic name conserver.local. The shared conserver.cf file includes this file to
read the by-host information.

So, e.g. on a conserver server s1, the directory /etc/conserver looks like

-rw-r----- 1 root root 28785 Apr 18 12:15 conserver.cf
-rw-r----- 1 root root 201 Mar 30 15:48 conserver.s1.cf
-rw-r----- 1 root root 205 Mar 30 15:48 conserver.s2.cf
lrwxrwxrwx 1 root root 20 Mar 30 15:29 conserver.local.cf -> conserver.s1.cf

That way, you can distribute a complete set of configuration files to multiple servers without damaging the setup.

The Local Configuration File

Local configuration will usually only set the master for certain console groups, i.e. it enables the server to decide which
console lines it serves itself, and to which other master it should redirect requsts for other console lines.

For a server that should host the consoles for the project “bii” locally, and redirect the requests for “mls” consoles to
another server, the local configuration looks like this:

default m-mls { master s2.mls.bessy.de; }
default m-bii { master localhost; }

Users and Groups

Set up a scheme of users and groups that you want to use. Authentification can be done by a password file or using
PAM. Users and group definitions are used to grant access rights (read-only, read-write, admin) to certain users and
groups. Decide what you need, and configure it.

We are using something like

group grp-adm { users me, you, doubleyou; }

group grp-tsc { users grp-adm, tscadm; }
group grp-id { users grp-adm, idadm; }

to have people from two different areas (controls, insertion devices) use a password for write access to their IOCs.

Access to the Server

Define who will be the administrators on the server and which networks you will be allowing access from.

In this case: Use the group of administrators defined above, and allow access from all local (private) IPs.

access * {
admin grp-adm;
allowed 127.0.0.1, 192.168.0.0/16;

}

1.27. How to Set Up Console Access and Logging for VME and Soft IOCs 311

EPICS Documentation

Defaults for the Server

This block provides a reasonable set of default definitions for things. Some may even not be necessary, they’re just here
for clarification.

config localhost {
autocomplete true;
defaultaccess rejected;
initdelay 60;
logfile /var/log/conserver/conserver/conserver.log;
passwdfile /etc/conserver/conserver.passwd;
primaryport 782;
redirect yes;
reinitcheck 1;
secondaryport 0;
sslrequired false;
unifiedlog /var/log/conserver/unified.log;

}

Defaults for the Groups

In this case, just make the logs go in different subdirectories, and allow read/write access for the groups defined above.

default tsc-def { logfile /var/log/conserver/tsc/&.log; rw grp-tsc; }
default id-def { logfile /var/log/conserver/id/&.log; rw grp-id; }

Message of the Day and Time Stamping

This defines what connecting users will see as a warning when they connect.

default message {
motd \\

WARNING!!!
This is only an example! ; }

General default that includes the message just defined and adds the definition of time stamps that conserver adds to log
entries: at every line.

default def {
include message;
timestamp "1lb";

}

312 Chapter 1. How this documentation is organized

EPICS Documentation

Include the Local Definitions

Include the local by-host configuration (as mentioned above).

#include /etc/conserver/conserver.local.cf

Defining the Soft IOC Hosts

Here the host machines for the soft IOCs are defined. (So that the conserver knows where to ssh to.)

default h-mls-sioc { host iochost.mls.bessy.de; }
default h-bii-sioc { host iochost.bii.bessy.de; }

Defaults for Console Types

These are the generic definitions for soft IOCs and terminal server based IOCs for the different groups and projects. We
do it in a way so that the instances of console lines will only have to include one definition and add the stuff needed for
that instance. the examples show the definitions for soft IOCs and terminal servers (telnet access to port 2001. . . 2016
for a 16 port terminal server). The first include is a definition from the local configuration file, telling the server which
of the servers that console is connected to (who is the master of the console). The other included defintions were shown
above.

default bii-sioc {
include m-bii;
include def;
include tsc-def;
include h-bii-sioc;
type exec;
execrunas iocadm;
exec /usr/bin/ssh -i /home/controls/iocadm/.ssh/conserver -t U@H;
execsubst U=cs,H=hs;

}

default bii-ts {
include m-bii;
include def;
include tsc-def;
type host;
portbase 2000;

}

Lists of Terminal Servers

Next are the lists of the existing terminal servers, that VME IOC consoles (or other hardware) are connected to.

default ts2 { include bii-ts; host ts2.bii.bessy.de; }
default ts3 { include bii-ts; host ts3.bii.bessy.de; }

1.27. How to Set Up Console Access and Logging for VME and Soft IOCs 313

EPICS Documentation

Lists of Console Instances

Finally, there are the lists of console instances. One line per each soft IOC or VME IOC that we are connecting to.
Have a look at two VME IOCs on terminal server 2, one on terminal server 3, plus three soft IOCs.

console ioc1 { include ts2; port 1; include tsc-def; aliases ts2-01; }
console ioc2 { include ts2; port 2; include tsc-def; aliases ts2-02; }
console ioc3 { include ts3; port 1; include tsc-def; aliases ts3-01; }

console sioc1 { include bii-sioc; }
console sioc2 { include bii-sioc; }
console sioc3 { include bii-sioc; }

Start the Conserver Servers

/etc/init.d/conserver-server start (or the equivalent on your Linux distribution) should get things running.

Entering it in your system configuration will make sure it gets started when the machine boots.

Caveat: Memory Leak

There is a memory leak in the conserver server (as of version 8.1.14). We have set up a cron job that restarts the
conserver server once a week to get around. This bug is known to the conserver developers - hopefully it will be fixed
some time soon.

Configure the Conserver Clients

After installing the conserver-client package, the system-wide configuration file /etc/console.cf will contain the
default configuration for the console clients.

It might be a good idea to add a DNS alias console to all your networks, so that all console configurations can point to
the same master. Even if you move a conserver to a different machine, you will be able to change the DNS alias and
don’t have to reconfigure all clients.

1.27.3 Set up Web Browsing for the Log Files

Collect the Log Files

On your web server, create a location where the conserver logs are to be placed. Set up cron jobs that collect the logfiles
from your servers using commands like this:

/usr/bin/rsync -a --delete consync@s1.bii.bessy.de:/var/log/conserver /web/conserver-bii␣
→˓>> /web/conserver-bii/consync.log 2>&1

(This one requires a user account for consync being created on the conserver server s1, and that the collecting user
account having ssh access to it.)

314 Chapter 1. How this documentation is organized

EPICS Documentation

Setup the Web Server

This is well outside the scope of this Wiki page and should be fairly easy - refer to the documentation of your web
server to learn about it.

Good luck!

Ralph Lange (BESSY)

1.28 PV Save and Restore Tools available

There are a number of different tools available within the EPICS community for saving and restoring values of PVs.
This page gives somewhere for them to be briefly described, since they all have somewhat different characteristics.
This page may be incomplete; if you know of a published tool that is not described here, please consider adding it

1.28.1 IOC-based Tools

1.28.2 SynApps Autosave

Autosave automatically saves the values of EPICS process variables (PVs) to files on a server, and restores those values
when the IOC is rebooted.

1.28.3 Host-based Tools

XAL ‘score’

The XAL collection of high-level applications includes ‘score’: A Table of PV names, each with a current value and a
saved value. One can see which PVs differ from their saved state, restore them etc.

Don’t know a good web page, but try this one .

CSS ‘PV Table’

Similar to ‘score’, but simpler and still unter development. Saves values to XML files, no connection to RDB.

For more on CSS (Control System Studio), see the main page at DESY.

sddscasr

sddscasr is based off of casave, carestore, and sddssnapshot. It is used to save and restore snapshots of the PV values.
The format of the request file and snapshot file is SDDS. It can be run in daemon mode where it maintains connections
to PVs and when a trigger PV is activated it creates a new snapshot. This reduces the number of network calls to all
the IOCs because it does not have to search for the PVs every time a snapshot it taken. This program is used at the APS
for many different systems, including some with request files having over 17 thousand PVs.

It can also be used in conjunction with APS’s SaveCompareRestore tool.

1.28. PV Save and Restore Tools available 315

mailto:Ralph.Lange_at_bessy.de
https://openxal.github.io/
http://css.desy.de
https://ops.aps.anl.gov/manuals/EPICStoolkit/EPICStoolkit.html

EPICS Documentation

1.29 Channel Access Protocol Specification

Tags: advanced

Table of Contents

• License

• Document History

• Introduction

• Concepts

– Process Variables

– Virtual Circuit

– Channels

– Monitors

– Server Beacons

– Repeater

– Timeout Behavior

– Version compatibility

– Exceptions

• Operation

– Overall Server Operation

– Overall Client Operation

– Name Searching

– Virtual Circuits

– Data Count in Gets and Monitors

• Data Types

• Messages

– Message Structure

– Message Identifiers

• Commands (TCP and UDP)

– CA_PROTO_VERSION

– CA_PROTO_SEARCH

– CA_PROTO_NOT_FOUND

– CA_PROTO_ECHO

• Commands (UDP)

– CA_PROTO_RSRV_IS_UP

– CA_REPEATER_CONFIRM

– CA_REPEATER_REGISTER

316 Chapter 1. How this documentation is organized

EPICS Documentation

• Commands (TCP)

– CA_PROTO_EVENT_ADD

– CA_PROTO_EVENT_CANCEL

– CA_PROTO_READ

– CA_PROTO_WRITE

– CA_PROTO_SNAPSHOT

– CA_PROTO_BUILD

– CA_PROTO_EVENTS_OFF

– CA_PROTO_EVENTS_ON

– CA_PROTO_READ_SYNC

– CA_PROTO_ERROR

– CA_PROTO_CLEAR_CHANNEL

– CA_PROTO_READ_NOTIFY

– CA_PROTO_READ_BUILD

– CA_PROTO_CREATE_CHAN

– CA_PROTO_WRITE_NOTIFY

– CA_PROTO_CLIENT_NAME

– CA_PROTO_HOST_NAME

– CA_PROTO_ACCESS_RIGHTS

– CA_PROTO_SIGNAL

– CA_PROTO_CREATE_CH_FAIL

– CA_PROTO_SERVER_DISCONN

• Payload Data Types

– DBR_STS_* meta-data

– DBR_TIME_* meta-data

– DBR_GR_SHORT meta-data

– DBR_GR_CHAR meta-data

– DBR_GR_FLOAT meta-data

– DBR_GR_DOUBLE meta-data

– GR_ENUM and CTRL_ENUM meta-data

• Constants

– Port numbers

– Representation of constants

– Monitor Mask

– Search Reply Flag

– Access Rights

1.29. Channel Access Protocol Specification 317

EPICS Documentation

• Example message

• Repeater Operation

– Startup

– Client detection

– Operation

– Shutdown

• Searching Strategy

• ECA Error/Status Codes

• Example conversation

• Glossary of Terms

• References

1.29.1 License

This document is distributed under the terms of the GNU Free Documentation License, version 1.2.

1.29.2 Document History

Revi-
sion

Date Author Sec-
tion

Modification

1.0 2003-12-
12

Klemen Žagar all Created.

1.1 2004-01-
08

Aleš Pucelj all Finalized structure.

2004-01-
10

Matej Šeko-
ranja

all Review.

1.2 2004-04-
19

Aleš Pucelj all Draft completed.

1.3 2004-05-
31

Aleš Pucelj all Matej’s comments considered (after Channel Access for Java
implementation).

2004-06-
01

Matej Šeko-
ranja

all Review.

2004-08-
12

Klemen Žagar all Released

1.4 2008-02-
07

Matej Šeko-
ranja

all Description of CA_PROTO_READ and CA_PROTO_READ_SYNC
added.

2008-02-
07

Klemen Žagar all Released

1.4.1 2014-08-
27

Daniel J. Lauk all Transformed to AsciiDoc format. Recreated graphics.

1.5 2014-09 Michael David-
saver

all Major revision to describe operation semantics

1.6 2019-09-
05

Ian Gillingham all Minor revision migrated to Readthedocs via Shpinx build from
rst source

318 Chapter 1. How this documentation is organized

http://www.gnu.org/licenses/old-licenses/fdl-1.2.html
mailto:klemen.zagar@cosylab.com
mailto:ales.pucelj@cosylab.com
mailto:matej.sekoranja@cosylab.com
mailto:matej.sekoranja@cosylab.com
mailto:ales.pucelj@cosylab.com
mailto:ales.pucelj@cosylab.com
mailto:matej.sekoranja@cosylab.com
mailto:matej.sekoranja@cosylab.com
mailto:klemen.zagar@cosylab.com
mailto:matej.sekoranja@cosylab.com
mailto:matej.sekoranja@cosylab.com
mailto:klemen.zagar@cosylab.com
mailto:daniel.lauk@psi.ch
http://asciidoc.org/
mailto:mdavidsaver@gmail.com
mailto:mdavidsaver@gmail.com
mailto:ian.gillingham@diamond.ac.uk

EPICS Documentation

1.29.3 Introduction

This document describes the EPICS Channel Access (CA) protocol as it is, and has been, implemented. It is also
intended to act as a specification to allow the creation of new client and server implementations. The focus is on
versions >= 4.11 of the CA protocol, which is used by EPICS Base 3.14.0 and later. No changes from protocol versions
before 4.8 (EPICS Base 3.13.0) will be included in this document.

For the benefit of those writing new clients and servers RFC 2119:Key words for use in RFCs to Indicate Requirement
Levels are used.

1.29.4 Concepts

Process Variables

A Process Variable (PV) is the addressable unit of data accessible through the Channel Access protocol. Each PV has
a unique name string and SHOULD be served by a single Channel Access server. Specifically, when searching for a
PV, each client MUST NOT receive replies identifying more than one server.

Virtual Circuit

A TCP connection between a CA client and server is referred to as a Virtual Circuit.

Typically only one Circuit is opened between each client and server. However, a client MAY open more than one Circuit
to the same server.

TCP Message Flow

The following tree diagram illustrates the order in which normal (not error) CA messages can be sent on a TCP connec-
tion. Nodes with box borders are messages sent be the server, and oval borders are messages sent be the client. Nodes
with a double border (eg. “Open Socket”) are not themselves messages. Instead they indicate pre-conditions which
must be meet before certain messages can be sent.

The message CA_ERROR may be sent by a server in response to any client message.

Channels

A Channel is the association between a particular Circuit and PV name.

At core, a Channel is a runtime allocated pair of integer identifiers (CID and SID) used in place of the PV name to avoid
the overhead of string operations. Both client and server MUST maintain a list of the identifiers of all open Channels
associated with a Circuit.

The scope of these identifiers is a single Circuit. Identifiers from one Circuit MUST NOT be used on any other. Further
more, the same identifier number may be used one two different Circuit in connection with two different PV names.

A Channel’s identifiers are explained in section Message Identifiers.

1.29. Channel Access Protocol Specification 319

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt

EPICS Documentation

Monitors

A monitor is created on a channel as a means of registering/subscribing for asynchronous change notifications (pub-
lications). Monitors may be filtered to receive only a subset of events (Event Mask), such as value or alarm changes.
Several different monitors may be created for each channel.

Clients SHOULD NOT create two monitors on the same channel with the same Event Mask.

Server Beacons

Server beacons messages (CA_PROTO_RSRV_IS_UP) MUST be periodically broadcast. Beacon messages contain the
IP address and TCP port on which the server listens A sequential beacon ID is also included.

When a server becomes active, it MUST immediately begin sending beacons with an increasing delay. An initial
beacon interval of 0.02 seconds is RECOMMENDED. After each beacon is sent the interval SHOULD be increased
up to a maximum interval. Doubling the interval is RECOMMENDED. The RECOMMENDED maximum interval is
15 seconds.

As a server sends beacons it MUST increment the BeaconID field for each message sent.

CA clients MAY use a server’s first beacon as a trigger to re-send previously unanswered CA_PROTO_SEARCH mes-
sages.

While it was done historically, clients SHOULD NOT use Beacons to make timeout decisions for TCP Circuits. The
CA_PROTO_ECHO message should be used instead.

Clients wishing to detect new servers should maintain a list of all servers along with the last BeaconID received, and
the reception time. Servers SHOULD be removed from this list when no Beacon is received for some time (two beacon
periods is RECOMMENDED).

Repeater

See Repeater Operation.

Timeout Behavior

CA clients typically SHOULD NOT automatically reconnect Circuits which have become unresponsive, instead CA
clients SHOULD send a new CA_PROTO_SEARCH request.

CA clients SHOULD on occasion re-send PV name searches which are not answered.

Care must be taken to avoid excessive network load due to repeated lookups and connections. Clients are
RECOMMENDED to implement an exponentially increasing (up to a maximum) interval when re-sending
CA_PROTO_SEARCH messages for each PV.

Clients are RECOMMENDED to implement a timeout before re-starting a search when a Channel is closed due to an
Exception, or Channel creation fails with CA_PROTO_CREATE_CH_FAIL reply.

320 Chapter 1. How this documentation is organized

EPICS Documentation

Version compatibility

Certain aspects of Channel Access protocol have changed between releases. In this document, Channel Access versions
are identified using CA_VXYY, where X represents single-digit major version number and YY represents a single- or
double-digit minor version number. Stating that a feature is available in CA_VXYY implies that any client supporting
version XYY must support the feature. Implementation must be backward compatible with all versions up to and
including its declared supported minor version number.

Example 1. Channel Access version number

CA_V43, denotes version 4.3 (major version 4, minor version 3).

Channel Access protocol carries an implicit major version of 4. Minor version begin with 1. Minor version 0 is not a
valid version.

When a Virtual Circuit is created both client and server send their minor version numbers. The valid messages and
semantics of the Circuit are determined by the lower of the two minor versions.

A partial history of CA minor version changes:

EPICS Base CA Minor Year Reason
3.14.12-pre1 13 2010 Dynamic array size in monitors
3.14.12 12 2010 PV search over tcp
3.14.0-b2 11 2002 large array?, circuit priority?
3.14.0-b2 10 2002 Beacon counter???
3.14.0-b1 9 2001 Large packet header
3.13.0-b10 8 1997 ??
3.13.0-a5 7 1996 Start of CVS history
3.12.1.3 6 1995 ???
3.12.1.1 5 1995 ???
3.12.0-beta1 4 1994 ???
3.12.0-beta0 3 1994 Start of GIT history

Exceptions

Channel Access protocol error messages (CA_PROTO_ERROR) are referred to as Exceptions. Exceptions are sent by
a CA server to indicate its failure to process a client message.

An Exception MAY be sent in response to any client message, including those which normally would not result in a
reply.

Exception messages carry the header of the client message which triggered the error. It is therefore always possible to
associate an Exception with the request which triggered it.

1.29.5 Operation

Overall Server Operation

A CA server will maintain at least two sockets.

A UDP socket bound to the CA port (def. 5064) MUST listen for PV name search request broadcasts. PV name search
replies are sent as unicast messages to the source of the broadcast. This socket, or another UDP socket, SHOULD
periodically send Beacons to the CA Beacon port (def. 5065).

1.29. Channel Access Protocol Specification 321

EPICS Documentation

A TCP socket listening on an arbitrary port. The exact port number is included in PV name search replies. This socket
will be used to build Virtual Circuits.

A CA server SHOULD NOT answer PV name search requests for itself unless a CA_PROTO_CREATE_CHAN for that
PV from the same client can be expected to succeed. To do otherwise risks excessive load in a tight retry loop.

Overall Client Operation

A CA client SHOULD maintain a registration with a Repeater on the local system, (re)starting it as necessary.

Clients will send PV name search messages and listen for replies. Typically a client will maintain a table of unanswered
name searches and a cache of recent results in order avoid duplicate searches, and to process any replies.

Once an affirmative search reply is received, a Virtual Circuit to the responder is opened if needed. If the client already
has a circuit open to this server, it SHOULD be reused. When a Circuit is available, a Channel is created on it, then
various get/put/monitor operations are performed on this Channel.

Name Searching

The process of finding the server which advertises a PV to a particular client can be carried out over UDP, or with >=
CA_V412 over a TCP connection.

In either case each client SHOULD be pre-configured with a set of destinations to send queries. For UDP searching,
this is a list of unicast or broadcast endpoints (IP and port). For TCP searching, this is a list of endpoints.

It is RECOMMENDED that a default set of UDP endpoints be populated with the broadcast addresses of all network
interfaces except the loopback.

It is RECOMMENDED that, on client startup, Circuits be established to all endpoints in the TCP search list.

Search results are transitory. Subsequent searches MAY yield different results. Therefore queries SHOULD be re-tried
unless an active Channel is already open.

UDP search datagrams

Several CA messages MAY be included in one UDP datagram.

A datagram which includes CA_PROTO_SEARCH messages MUST begin with a CA_PROTO_VERSION message.

For efficiency it is RECOMMENDED to include as many search requests as possible in each datagram, subject to
datagram size limits.

A CA server MUST NOT send a CA_PROTO_NOT_FOUND in response to a UDP search request.

TCP search

CA_PROTO_SEARCH messages MUST NOT be sent on a Circuit unless a CA_PROTO_VERSION message has been
received indicating >= CA_V412.

When supported, CA_PROTO_SEARCH messages may be sent at any time the circuit is open.

A CA server MAY send a CA_PROTO_NOT_FOUND in response to a UDP search request if the DO_REPLY bit is
set.

Clients MAY ignore CA_PROTO_NOT_FOUND messages.

A CA_PROTO_NOT_FOUND message is not final. A subsequent search might yield a different result.

322 Chapter 1. How this documentation is organized

EPICS Documentation

Virtual Circuits

Inactivity timeout

When a Circuit is created, both client and server MUST begin a countdown timer. When any traffic (including a
CA_PROTO_ECHO message) is received on the Circuit, this counter is reset to its initial value. If the timer reaches
zero, the Circuit is closed.

Clients MUST send a CA_PROTO_ECHO message before the countdown reaches zero. It is RECOMMENDED to
send an echo message when the countdown reaches half its initial value.

When a CA_PROTO_ECHO message is received by the server, it MUST be immediately copied back to the client.

The RECOMMENDED value for the countdown timer is 30 seconds.

Circuit Setup

When a Circuit is created, both client and server MUST send CA_PROTO_VERSION as their first message. This
message SHOULD be sent immediately.

Note for implementers. For EPICS Base before 3.14.12, RSRV did not immediately send a version message due to a
buffering problem. Instead the version message was not sent until some other reply forced a flush of the send queue.

In addition the client SHOULD send CA_PROTO_HOST_NAME and CA_PROTO_CLIENT_NAME messages. Once
this is done, the Circuit is ready to create channels.

Note that the host and client name messages SHOULD NOT be (re)sent after the first channel is created. If the client
or host name strings change, the circuit SHOULD be closed.

If no host or client name messages are received a server MUST consider the client to be anonymous. It is RECOM-
MENDED that anonymous users not be granted rights for the Put operation.

Channel Creation

Channel creation starts with a CA_PROTO_CREATE_CHAN request from the client. This message includes the PV
name string, and a client selected CID.

If the server can not provide the named PV it replies with CA_PROTO_CREATE_CH_FAIL using the same CID. The
server MUST NOT remember the CID of failed creation requests as clients MAY re-used them immediately.

If the server can provide the named PV, it replies with CA_PROTO_ACCESS_RIGHTS followed by a
CA_PROTO_CREATE_CHAN reply. Further CA_PROTO_ACCESS_RIGHTS messages MAY follow to reflect
changes to access permissions.

Note that the CA_PROTO_CREATE_CHAN reply includes the Channel’s native DBR datatype and the maximum
number of elements which can be retrieved/set by a get, put, or monitor operation. These attributes are fixed for the
lifetime of the channel.

The reply also contains the server selected SID identifier. Together with the CID, these two identifier will be used to
refer to the Channel in subsequent operations.

The Channel remains active, and the identifiers valid, until a CA_PROTO_CLEAR_CHANNEL request is sent by a
client and its reply received, until a CA_PROTO_SERVER_DISCONN message is received by a client, or if the circuit
(TCP connection) is closed.

After a server sends a CA_PROTO_CLEAR_CHANNEL reply or a CA_PROTO_SERVER_DISCONN message it
MAY reuse the SID immediately.

1.29. Channel Access Protocol Specification 323

EPICS Documentation

After a client receives a CA_PROTO_CLEAR_CHANNEL reply or a CA_PROTO_SERVER_DISCONN message it
MAY reuse the CID immediately.

Therefore after a client sends a CA_PROTO_CLEAR_CHANNEL request, or a sever sends a
CA_PROTO_SERVER_DISCONN request, no further messages (including CA_PROTO_ERROR) should be
sent for the closed channel.

Put Operations

A Operation to write data to a Channel begins with a CA_PROTO_WRITE or CA_PROTO_WRITE_NOTIFY re-
quest. The difference between the two is that CA_PROTO_WRITE_NOTIFY gives a reply on success, while
CA_PROTO_WRITE does not.

The CA_PROTO_WRITE SHOULD be used when it is not important that all Put operations are executed. A server
SHOULD make best effort to ensure that, when a burst of CA_PROTO_WRITE requests is received, that the last
request is processed (others could be dropped).

A CA_PROTO_WRITE_NOTIFY request indicates that the client intends to wait until the request is fulfilled before
continuing. A server MUST reply to all CA_PROTO_WRITE_NOTIFY requests. A server SHOULD make best effort
to fully process all CA_PROTO_WRITE_NOTIFY requests.

Both request messages include a SID to determine which Channel is being operated on.

In addition, a client selected IOID is included. This identifier will be included in a CA_PROTO_WRITE_NOTIFY
reply, as well as any CA_PROTO_ERROR exception message resulting from a Put request.

Get Operation

The present value of a Channel is queried with a CA_PROTO_READ_NOTIFY request.

A server MUST reply to all CA_PROTO_READ_NOTIFY requests. A server SHOULD make best effort to fully
process all CA_PROTO_READ_NOTIFY requests.

CA_PROTO_READ_NOTIFY messages include a SID to determine which Channel is being operated on, as well as a
client selected IOID which will be included in the reply.

The IOID MUST be unique on the channel.

Monitor Operation

A Monitor operation is a persistent subscription which is initiated by a CA_PROTO_EVENT_ADD request and termi-
nated with a CA_PROTO_EVENT_CANCEL request.

Both CA_PROTO_EVENT_ADD and CA_PROTO_EVENT_CANCEL messages include a channel SID as well as a
client selected SubscriptionID.

The SubscriptionID MUST be unique on the channel.

When a subscription is created a server SHOULD immediately send a CA_PROTO_EVENT_ADD reply with the
present value of the Channel if such a value is available.

After a CA_PROTO_EVENT_CANCEL request is received, a server MUST send one final
CA_PROTO_EVENT_ADD reply with a zero payload size. Before a CA_PROTO_EVENT_CANCEL request
is received, a server MUST NOT send a CA_PROTO_EVENT_ADD reply with a zero payload size.

324 Chapter 1. How this documentation is organized

EPICS Documentation

Errors

Any client message MAY result in an CA_PROTO_ERROR reply from a server.

Data Count in Gets and Monitors

Prior to CA_V413, the element count in a CA_PROTO_EVENT_ADD or CA_PROTO_READ_NOTIFY reply MUST
be the same as given in the corresponding CA_PROTO_EVENT_ADD or CA_PROTO_READ_NOTIFY request. A
request for zero elements MUST result in an ECA_BADCOUNT exception. If a server can not provide all of the
elements requested, then it fills out the message body with null bytes.

Beginning in CA_V413, a request for zero elements is valid. The element count in a reply is then the number of elements
the server could provide (perhaps zero).

The element count in a reply MUST NOT exceed the maximum element count on the channel.

This dynamic array size feature creates a potential ambiguity in the protocol if the number of bytes in a
CA_PROTO_EVENT_ADD reply is zero.

Therefore it is RECOMMENDED that clients not create dynamic monitors for the plain DBR_* types. Clients needing
to create such monitors are RECOMMENDED to promote the type to the corresponding DBR_STS_* (the extra meta-
data can be ignored for internal processing). Then a zero element count has a non-zero body size.

Note to implementers. RSRV will always give at least one element in CA_PROTO_EVENT_ADD replies. libca will
silently ignore CA_PROTO_EVENT_ADD replies with zero size before a CA_PROTO_EVENT_CANCEL request is
received.

1.29.6 Data Types

This section defines all primitive data types employed by CA, as well as their C/C++ equivalents. These data types are
referred to in the subsequent sections.

Type
Name

C/C++ Description

BYTE char Signed 8-bit integer.
UBYTE unsigned

char
Unsigned 8-bit integer.

INT16 short Signed 16-bit integer.
UINT16 unsigned

short
Unsigned 16-bit integer.

INT32 int Signed 32-bit integer.
UINT32 unsigned

int
Unsigned 32-bit integer.

FLOAT float IEEE 32-bit float.
DOUBLE double IEEE 64-bit float.
STRING[n]char[] Array of UBYTE`s. If `[n] is specified, it indicates maximum allowed number of char-

acters in this string including (if necessary) termination character.
TIMESTAMPNone Timestamp represented with two UINT32 values. First is number of seconds since 0000 Jan

1, 1990. Second is number of nanoseconds within second

All values are transmitted over the network in big-endian (network) order. For example: UINT32 3145 (0x00000C49)
would be sent over the network represented as 00 00 0C 49.

1.29. Channel Access Protocol Specification 325

EPICS Documentation

1.29.7 Messages

Message Structure

All Channel Access messages are composed of a header, followed by the payload.

Header is always present. The command ID and payload size fields have a fixed meaning. Other header fields carry
command-specific meaning. If a field is not used within a certain message, its value MUST be zeroed.

Total size of an individual message is limited. With CA versions older than CA_V49, the maximum message size is
limited to 16384 (0x4000) bytes. Out of these, header has a fixed size of 16 (0x10) bytes, with the payload having a
maximum size of 16368 (0x3ff0) bytes.

Versions CA_V49 and higher may use the extended message form, which allows for larger payloads. The extended
message form is indicated by the header fields Payload Size and Data Count being set to 0xffff and 0, respectively.
Real payload size and data count are then given as UINT32 type values immediately following the header. Maximum
message size is limited by 32-bit unsigned integer representation, 4294967295 (0xffffffff). Maximum payload size
is limited to 4294967255 (0xffffffe7).

For compatibility, extended message form should only be used if payload size exceeds the pre- CA_V49 message size
limit of 16368 bytes.

Header

Table 1. Standard Message Header

0 1 2 3 4 5 6 7
Command Payload Data Type Data Count
Parameter 1 Parameter 2

Table 2. Extended Message Header

0 1 2 3 4 5 6 7
Command 0xFFFF Data Type 0x0000
Parameter 1 Parameter 2
Payload size Data count

Names of header fields are based on their most common use. Certain messages will use individual fields for purposes
other than those described here. These variations are documented for each message individually. All of values in header
are unsigned integers.

Generic header fields:

326 Chapter 1. How this documentation is organized

EPICS Documentation

Param-
eter

Type Description

Com-
mand

UINT16 Identifier of the command this message requests. The meaning of other header fields
and the payload depends on the command.

Payload
Size

UINT16 or
UINT32

Size of the payload (in bytes). MUST not exceed 0x4000 for UDP.

Data
Type

UINT16 Identifier of the data type carried in the payload. Data types are defined in section Pay-
load Data Types.

Data
Count

UINT16 or
UINT32

Number of elements in the payload.

Parame-
ter 1

UINT32 Command dependent parameter.

Parame-
ter 2

UINT32 Command dependent parameter.

Payload

The structure of the payload depends on the type of the message. The size of the payload matches the Payload Size
header field.

Message payloads MUST be padded to a length which is a multiple of 8 bytes. Zero padding is RECOMMENDED.

Message Identifiers

Some fields in messages serve as identifiers. These fields serve as identification tokens in within the context of a circuit
(TCP connection). The RECOMMENDED scheme for allocating these values is to create them sequentially starting at
0. All IDs are represented with UINT32.

Overflow of all identifiers MUST be handled! A long running applications might use more than 2**32 of some identifier
type (typically IOID).

CID - Client ID

A CID is the client selected identifier for a channel. A CID MUST be unique for a single Circuit.

Clients MUST not send a request with a CID which is not associated with an active Channel.

Servers MUST ignore any request which does not include the CID of an active channel without closing the Circuit.

A CID is found in the Parameter 1 field of CA_PROTO_ERROR, CA_PROTO_CREATE_CHAN ,
CA_PROTO_ACCESS_RIGHTS, CA_PROTO_CREATE_CH_FAIL, and CA_PROTO_SERVER_DISCONN mes-
sages. And in the Parameter 2 field of CA_PROTO_CLEAR_CHANNEL message.

1.29. Channel Access Protocol Specification 327

EPICS Documentation

SID - Server ID

A SID is the server selected identifier for a channel. A SID MUST be unique for a single Circuit.

Servers MUST not send a request with a SID which is not associated with an active Channel.

Clients MUST ignore any request which does not include the SID of an active channel without closing the Circuit.

A SID is found in the Parameter 1 field of CA_PROTO_EVENT_ADD, CA_PROTO_EVENT_CANCEL,
CA_PROTO_READ_NOTIFY , CA_PROTO_WRITE_NOTIFY , CA_PROTO_WRITE,
CA_PROTO_CLEAR_CHANNEL, and CA_PROTO_CREATE_CHAN (reply only) messages,

Subscription ID

A SubscriptionID is the client selected identifier for a subscription. A CID MUST be unique for a single Circuit.

A SubscriptionID is found in the Parameter 2 field of CA_PROTO_EVENT_ADD and CA_PROTO_EVENT_CANCEL
messages.

IOID

An IOID is the client selected identifier for a Get or Put operation. An IOID MUST be unique for a single message
type on a single Circuit.

It is possible though NOT RECOMMENDED to use the same IOID concurrently in a CA_PROTO_WRITE, a
CA_PROTO_READ_NOTIFY, and a CA_PROTO_WRITE_NOTIFY request.

An IOID is found in the Parameter 2 field of CA_PROTO_READ_NOTIFY , CA_PROTO_WRITE_NOTIFY , and
CA_PROTO_WRITE messages.

Search ID

A SearchID is a client selected identifier for a PV name search. A SearchID must be unique for each client endpoint
sending requests.

Due to the nature of UDP it is possible for datagrams to be duplicated. Several CA_PROTO_SEARCH messages with
the same SearchID MAY be considered to be duplicates, and only one used.

1.29.8 Commands (TCP and UDP)

The following commands are sent as either UDP datagrams or TCP messages. Some of the messages are also used
within the context of a Virtual Circuit (TCP connection).

328 Chapter 1. How this documentation is organized

EPICS Documentation

CA_PROTO_VERSION

Com-
mand

CA_PROTO_VERSION

ID 0 (0x00)
De-
scrip-
tion

Exchanges client and server protocol versions and desired circuit priority. MUST be the first message sent,
by both client and server, when a new TCP (Virtual Circuit) connection is established. It is also sent as the
first message in UDP search messages.

Request

Field Value Description
Command 0 Command identifier for CA_PROTO_VERSION.
Payload size 0 Must be 0.
Priority Desired priority Virtual circuit priority.
Version Version number Minor protocol version number. Only used when sent over TCP.
Reserved 0 Must be 0.
Reserved 0 Must be 0.

Table: Table 3. Header

Ver-
sion

Comment

>=
CA_V411

Server will send response immediately after establishing a virtual circuit.

<
CA_V411

Message does not include minor version number (it is always 0) and is interpreted as an echo command
that carries no data. Version exchange is performed immediately after CA_PROTO_CREATE_CHAN .

Table: Table 4. Compatibility

Comments

• Priority indicates the server’s dispatch scheduling priority which might be implemented by a circuit dedicated
thread’s scheduling priority in a preemptive scheduled OS.

• Due to a buffering bug, RSRV implementing < CA_V411 did not send CA_PROTO_VERSION immediately on
connection, but rather when some other response triggers a buffer flush.

Response

Field Value Description
Command 0 Command identifier for CA_PROTO_VERSION.
Reserved 0 Must be 0.
Priority 0 Must be 0.
Version Version number Minor protocol version number. Only used when sent over TCP.
Reserved 0 Must be 0.
Reserved 0 Must be 0.

1.29. Channel Access Protocol Specification 329

EPICS Documentation

Table: Table 5. Header

Version Comment
>= CA_V411 Server will not respond to request, but send response immediately after establishing a virtual circuit.
< CA_V411 Message does not include minor version number (it is always 0).

Table: Table 6. Compatibility

CA_PROTO_SEARCH

Command CA_PROTO_SEARCH
ID 6 (0x06)
Description Searches for a given channel name. Sent over UDP or TCP.

Request

Field Value Description
Command 6 Command identifier for CA_PROTO_SEARCH.
Payload Size >= 0 Padded size of channel name.
Reply Reply Flag Search Reply Flag, indicating whether failed search response should be returned.
Version Version Num-

ber
Client minor protocol version number.

SearchID Client allocated Search identifier.
SearchID Client allocated Search identifier.

Table: Table 7. Header

Name Type Value Description
Channel name STRING Name of channel to search for.

Table: Table 8. Payload

Comments

• Sent as a UDP datagram.

• It is illegal to specify DO_REPLY flag whenever the message is sending as UDP datagram, regardless of whether
broadcast or multicast is used.

• SearchID will be allocated by the client before this message is sent.

• SearchID field value is duplicated.

• Reply flag will be generally DONT_REPLY when searching using broadcast and DO_REPLY when searching using
unicast. When DO_REPLY is set, server will send a CA_PROTO_NOT_FOUND message indicating it does not
have the requested channel.

330 Chapter 1. How this documentation is organized

EPICS Documentation

Response

Field Value Description
Command 6 Command identifier for CA_PROTO_SEARCH.
Payload Size 8 Payload size is constant.
Data Type Port number TCP Port number of server that responded.
Data Count 0 Must be 0.
SID or IP 0xffffffff Temporary SID (deprecated) or server IP address.
SearchID Client allocated Search identifier.

Table: Table 9. Header

Name Type Value Description
Server protocol version UINT16 Server protocol version.

Table: Table 10. Payload

Comments

• Received as UDP datagram.

• Search ID field value (CID) is copied from the request.

• Before CA_V411 the SID/IP field will always have the value of 0xffffffff and the server IP address is assumed
to be the senders IP.

• Starting with CA_V411 the server’s IP address is encoded in the SID/IP field if it differs from the sender’s IP, or
0xffffffff if it is the same.

• The port number included in the header is the TCP port of the server. Two servers on the same host can share a
UDP port number, but not a TCP port number. Therefore, the port the client needs to connect to in that situation
may not be the same as expected if this field in the response is not used.

CA_PROTO_NOT_FOUND

Com-
mand

CA_PROTO_NOT_FOUND

ID 14 (0x0E)
De-
scrip-
tion

Indicates that a channel with requested name does not exist. Sent in response to CA_PROTO_SEARCH,
but only when its DO_REPLY flag was set. Sent over UDP.

1.29. Channel Access Protocol Specification 331

EPICS Documentation

Response

Field Value Description
Command 14 Command identifier for CA_PROTO_NOT_FOUND.
Reserved 0 Must be 0.
Reply Flag DO_REPLY Same reply flag as in request: always DO_REPLY.
Version Same as request Client minor protocol version number.
SearchID Client allocated Search identifier.
SearchID Client allocated Search identifier.

Table: Table 11. Header

Comments

• Contents of the header are identical to the request.

• SearchID fields are duplicated.

• Original request payload is not returned with the response.

CA_PROTO_ECHO

Command CA_PROTO_ECHO
ID 23 (0x17)
Description Connection verify used by CA_V43. Sent over TCP.

Request

Field Value Description
Command 23 Command identifier for CA_PROTO_ECHO.
Reserved 0 Must be 0.
Reserved 0 Must be 0.
Reserved 0 Must be 0.
Reserved 0 Must be 0.
Reserved 0 Must be 0.

Table: Table 12. Header

Response

Field Value Description
Command 23 Command identifier for CA_PROTO_ECHO.
Reserved 0 Must be 0.
Reserved 0 Must be 0.
Reserved 0 Must be 0.
Reserved 0 Must be 0.
Reserved 0 Must be 0.

332 Chapter 1. How this documentation is organized

EPICS Documentation

Table: Table 13. Header

1.29.9 Commands (UDP)

The following commands are sent as UDP datagrams.

CA_PROTO_RSRV_IS_UP

Com-
mand

CA_PROTO_RSRV_IS_UP

ID 13 (0x0D)
De-
scrip-
tion

Beacon sent by a server when it becomes available. Beacons are also sent out periodically to announce the
server is still alive. Another function of beacons is to allow detection of changes in network topology. Sent
over UDP.

Response

Field Value Description
Command 13 Command identifier for CA_PROTO_RSRV_IS_UP.
Reserved 0 Must be 0.
Version Version number CA protocol version
Server port >= 0 TCP Port the server is listening on.
BeaconID Sequential integers Sequential Beacon ID.
Address 0 or IP May contain IP address of the server.

Table: Table 14. Header

Comments

• IP field may contain IP of the server. If IP is not present (field Address value is 0), then IP may be substituted
by the receiver of the packet (usually repeater) if it is capable of identifying where this packet came from. Any
non-zero address must be interpreted as server’s IP address.

• BeaconIDs are useful in detecting network topology changes. In certain cases, same packet may be routed using
two different routes, causing problems with datagrams. If multiple beacons are received from the same server
with same BeaconID, multiple routes are the cause.

• If a server is restarted, it will most likely start sending BeaconID values from beginning (0). Such situation must
be anticipated.

1.29. Channel Access Protocol Specification 333

EPICS Documentation

CA_REPEATER_CONFIRM

Command CA_REPEATER_CONFIRM
ID 17 (0x11)
Description Confirms successful client registration with repeater. Sent over UDP.

Response

Field Value Description
Command 17 Command identifier for CA_REPEATER_CONFIRM.
Reserved 0 Must be 0.
Reserved 0 Must be 0.
Reserved 0 Must be 0.
Reserved 0 Must be 0.
Repeater address IP address Address with which the registration succeeded.

Table: Table 15. Header

Comments

• Since repeater can bind to different local address, its IP is reported in Repeater address. This address will be
either 0.0.0.0 or 127.0.0.1.

CA_REPEATER_REGISTER

Com-
mand

CA_REPEATER_REGISTER

ID 24 (0x18)
Descrip-
tion

Requests registration with the repeater. Repeater will confirm successful registration using
CA_REPEATER_CONFIRM. Sent over TCP.

Request

Field Value Description
Command CA_REPEATER_REGISTER Command identifier
Reserved 0 Must be 0
Reserved 0 Must be 0
Reserved 0 Must be 0
Reserved 0 Must be 0
Client IP address IP address IP address on which the client is listening

Table: Table 16. Header

334 Chapter 1. How this documentation is organized

EPICS Documentation

1.29.10 Commands (TCP)

The following commands are used within the context of Virtual Circuit and are sent using TCP.

CA_PROTO_EVENT_ADD

Com-
mand

CA_PROTO_EVENT_ADD

ID 1 (0x01)
De-
scrip-
tion

Creates a subscription on a channel, allowing the client to be notified of changes in value. A request will
produce at least one response. Sent over TCP.

Request

Field Value Description
Command 1 Command identifier for CA_PROTO_EVENT_ADD
Payload Size 16 Payload size is constant
Data Type Desired DBR type of the return value.
Data Count >= 0 Desired number of elements
SID SID of the channel. SID of the channel on which to register this subscription. See SID -

Server ID.
Subscrip-
tionID

Client provided Subscrip-
tion ID

Subscription ID identifying this subscription.See Subscription ID.

Table: Table 17. Header

Payload

Name Type Value Description
Low val FLOAT32 0.0 Low value
High val FLOAT32 0.0 High value
To val FLOAT32 0.0 To value
Mask UINT16 Monitor mask Mask indicating which events to report

Comments

• All payload fields except Mask are initialized to 0 and are present only for backward compatibility.

• Successful subscription will result in an immediate response with the current value. Additional responses will
be sent as the change occurs based on the Mask parameter.

• Mask defines a filter on which events will be sent.

• A subscription should be destroyed when no longer needed to reduce load on server. See
CA_PROTO_EVENT_CANCEL.

1.29. Channel Access Protocol Specification 335

EPICS Documentation

Response

Field Value Description
Command 1 Command identifier for CA_PROTO_EVENT_ADD
Payload Size >= 0 Size of the response.
Data Type same as request Payload data type.
Data Count same as request Payload data count.
Status code One of ECA codes Status code (ECA_NORMAL on success).
SubscriptionID same as request Subscription ID

Table: Table 18. Header

Name Type Value Description
Values DBR Value stored as DBR type specified in Data Type field. See Payload Data Types.

Table: Table 19. Payload

Comments

• Response data type and count match that of the request.

• To confirm successful subscription, first response will be sent immediately. Additional responses will be sent as
the change occurs based on mask parameters.

CA_PROTO_EVENT_CANCEL

Command CA_PROTO_EVENT_CANCEL
ID 2 (0x02)
Descrip-
tion

Clears event subscription. This message will stop event updates for specified channel. Sent over TCP.

Request

Field Value Description
Command 2 Command identifier for CA_PROTO_EVENT_CANCEL.
Payload Size 0 Must be 0.
Data Type Same value as in corresponding CA_PROTO_EVENT_ADD.
Data Count >= 0 Same value as in corresponding CA_PROTO_EVENT_ADD.
SID SID of channel Same value as in corresponding CA_PROTO_EVENT_ADD.
SubscriptionID Subscription ID Same value as in corresponding CA_PROTO_EVENT_ADD.

Table: Table 20. Header

Comments

• Both SID and SubscriptionID are used to identify which subscription on which monitor to destroy.

• Actual data type and count values are not important, but should be the same as used with corresponding
CA_PROTO_EVENT_ADD.

336 Chapter 1. How this documentation is organized

EPICS Documentation

Response

Field Value Description
Command 1 Command identifier for CA_PROTO_EVENT_ADD.
Payload Size 0 Must be 0.
Data Type Same as request. Same value as CA_PROTO_EVENT_ADD request.
Data Count 0 Must be 0.
SID Same as request. Same value as CA_PROTO_EVENT_ADD request.
SubscriptionID Same as request. Same value as CA_PROTO_EVENT_ADD request.

Table: Table 21. Header

Comments

• Notice that the response has CA_PROTO_EVENT_ADD command identifier!

• Regardless of data type and count, this response has no payload.

CA_PROTO_READ

Command CA_PROTO_READ
ID 3 (0x03)
Description Read value of a channel. Sent over TCP.

Deprecated since protocol version 3.13.

Request

Field Value Description
Command 3 Command identifier for CA_PROTO_READ_NOTIFY.
Payload Size 0 Must be 0.
Data Type DBR type Desired type of the return value.
Data Count >= 0 Desired number of elements to read.
SID Channel SID SID of the channel to read.
IOID Client provided IOID IOID of this operation.

Table: Table 22. Header

Comments

• Channel from which to read is identified using SID.

• Response will contain the same IOID as the request, making it possible to distinguish multiple responses.

1.29. Channel Access Protocol Specification 337

EPICS Documentation

Response

Field Value Description
Command 3 Command identifier for CA_PROTO_READ_NOTIFY.
Payload size Size of payload Size of DBR formatted data in payload.
Data type DBR type Payload format.
Data count >= 0 Payload element count.
SID Same as request SID of the channel.
IOID Same as request IOID of this operation.

Table: Table 23. Header

Name Type Value Description
DBR format-
ted data

DBR DBR format-
ted data

Value stored as DBR type specified in Data type field. Data count specifies
number of elements of DBR value field.

Table: Table 24. Payload

CA_PROTO_WRITE

Command CA_PROTO_WRITE
ID 4 (0x04)
Description Writes new channel value. Sent over TCP.

Request

Field Value Description
Command CA_PROTO_WRITE Command identifier
Payload size Size of DBR formatted payload Size of padded payload
Data type DBR type Format of payload
Data count ELEMENT_COUNT Number of elements in payload
SID SID provided by server Server channel ID
IOID Client provided IOID Request ID

Table: Table 25. Header

Name Type Value Description
DBR format-
ted data

DBR DBR format-
ted data

Value stored as DBR type specified in Data type field. Data count specifies
number of elements of DBR value field.

Table: Table 26. Payload

Comments

• There is no response to this command.

338 Chapter 1. How this documentation is organized

EPICS Documentation

CA_PROTO_SNAPSHOT

Command CA_PROTO_SNAPSHOT
ID 5 (0x05)
Description Obsolete.

CA_PROTO_BUILD

Command CA_PROTO_BUILD
ID 7 (0x07)
Description Obsolete.

CA_PROTO_EVENTS_OFF

Com-
mand

CA_PROTO_EVENTS_OFF

ID 8 (0x08)
De-
scrip-
tion

Disables a server from sending any subscription updates over this virtual circuit. Sent over TCP. This mech-
anism is used by clients with slow CPU to prevent congestion when they are unable to handle all updates
received. Effective automated handling of flow control is beyond the scope of this document.

Request

Field Value Description
Command 8 Command identifier for CA_PROTO_EVENTS_OFF
Reserved 0 Must be 0.
Reserved 0 Must be 0.
Reserved 0 Must be 0.
Reserved 0 Must be 0.
Reserved 0 Must be 0.

Table: Table 27. Header

Comments

• This request will disable sending of subscription updates on the server to which it is sent.

• Command applies to a single virtual circuit, so having multiple priority virtual circuit connections to the server
would only affect the one on which the message is sent.

• No response will be sent for this request.

1.29. Channel Access Protocol Specification 339

EPICS Documentation

CA_PROTO_EVENTS_ON

Com-
mand

CA_PROTO_EVENTS_ON

ID 9 (0x09)
De-
scrip-
tion

Enables the server to resume sending subscription updates for this virtual circuit. Sent over TCP. This mech-
anism is used by clients with slow CPU to prevent congestion when they are unable to handle all updates
received. Effective automated handling of flow control is beyond the scope of this document.

Request

Field Value Description
Command 9 Command identifier for CA_PROTO_EVENTS_ON
Reserved 0 Must be 0.
Reserved 0 Must be 0.
Reserved 0 Must be 0.
Reserved 0 Must be 0.
Reserved 0 Must be 0.

Table: Table 28. Header

Comments

• This request will enable sending of subscription updates on the server to which it is sent.

• Command applies to a single virtual circuit, so having multiple priority virtual circuit connections to the server
would only affect the one on which the message is sent.

• No response will be sent for this request.

CA_PROTO_READ_SYNC

Command CA_PROTO_READ_SYNC
ID 10 (0x0A)
Description Deprecated since protocol version 3.13.

Request

Field Value Description
Command 10 Command identifier for CA_PROTO_READ_SYNC.
Reserved 0 Must be 0.
Reserved 0 Must be 0.
Reserved 0 Must be 0.
Reserved 0 Must be 0.
Reserved 0 Must be 0.

Table: Table 29. Header

340 Chapter 1. How this documentation is organized

EPICS Documentation

CA_PROTO_ERROR

Com-
mand

CA_PROTO_ERROR

ID 11 (0x0B)
De-
scrip-
tion

Sends error message and code. This message is only sent from server to client in response to any request
that fails and does not include error code in response. This applies to all asynchronous commands. Error
message will contain a copy of original request and textual description of the error. Sent over UDP.

Response

Field Value Description
Command 11 Command identifier for CA_PROTO_ERROR
Payload
Size

Size of the request header that triggered the error plus size of the error message.

Reserved 0 Must be 0.
Reserved 0 Must be 0.
CID Channel CID CID of the channel for which request failed.
Status Code One of ECA codes Error status code.

Table: Table 30. Header

Name Type Value Description
Original Request Message Header Header of the request that caused the error.
Error Message STRING A null-terminated string conveying the error message.

Table: Table 31. Payload

Comments

• Complete exception report is returned. This includes error message code, CID of channel on which the request
failed, original request and string description of the message.

• CID value depends on original request and may not actually identify a channel.

• First part of payload is original request header with the same structure as sent. Any payload that was part of this
request is not included. Textual error message starts immediately after the header.

CA_PROTO_CLEAR_CHANNEL

Com-
mand

CA_PROTO_CLEAR_CHANNEL

ID 12 (0x0C)
De-
scrip-
tion

Clears a channel. This command will cause server to release the associated channel resources and no
longer accept any requests for this SID/CID.

1.29. Channel Access Protocol Specification 341

EPICS Documentation

Request

Field Value Description
Command 12 Command identifier of CA_PROTO_CLEAR_COMMAND
Reserved 0 Must be 0.
Reserved 0 Must be 0.
Reserved 0 Must be 0.
SID SID of the channel SID of channel to clear.
CID CID of the channel CID of channel to clear.

Table: Table 32. Header

Response

Field Value Description
Command 12 Command identifier of CA_PROTO_CLEAR_COMMAND
Reserved 0 Must be 0.
Reserved 0 Must be 0.
Reserved 0 Must be 0.
SID Same as request SID of cleared channel.
CID Same as request CID of cleared channel.

Table: Table 33. Header

Comments

• Server responds immediately and only then releases channel resources.

• Once a channel with a given SID has been cleared, any request sent with this SID will fail.

• Sent over TCP.

CA_PROTO_READ_NOTIFY

Command CA_PROTO_READ_NOTIFY
ID 15 (0x0F)
Description Read value of a channel. Sent over TCP.

Request

Field Value Description
Command 15 Command identifier for CA_PROTO_READ_NOTIFY.
Payload Size 0 Must be 0.
Data Type DBR type Desired type of the return value.
Data Count >= 0 Desired number of elements to read.
SID Channel SID SID of the channel to read.
IOID Client provided IOID IOID of this operation.

342 Chapter 1. How this documentation is organized

EPICS Documentation

Table: Table 34. Header

Comments

• Channel from which to read is identified using SID.

• Response will contain the same IOID as the request, making it possible to distinguish multiple responses.

Response

Field Value Description
Command 15 Command identifier for CA_PROTO_READ_NOTIFY.
Payload size Size of payload Size of DBR formatted data in payload.
Data type DBR type Payload format.
Data count >= 0 Payload element count.
SID Same as request SID of the channel.
IOID Same as request IOID of this operation.

Table: Table 35. Header

Name Type Value Description
DBR format-
ted data

DBR DBR format-
ted data

Value stored as DBR type specified in Data type field. Data count specifies
number of elements of DBR value field.

Table: Table 36. Payload

CA_PROTO_READ_BUILD

Command CA_PROTO_READ_BUILD
ID 16 (0x10)
Description Obsolete

Request

CA_PROTO_CREATE_CHAN

Command CA_PROTO_CREATE_CHAN
ID 18 (0x12)
Descrip-
tion

Requests creation of channel. Server will allocate required resources and return initialized SID. Sent
over TCP.

1.29. Channel Access Protocol Specification 343

EPICS Documentation

Request

Field Value Description
Command 18 Command identifier for CA_PROTO_CREATE_CHAN
Payload size Size of payload Padded length of channel name.
Reserved 0 Must be 0.
Reserved 0 Must be 0.
CID Channel CID CID of the channel to create.
Client version Version number Client minor protocol version.

Table: Table 37. Header

Payload

|[options=”header”]

Name Type Value Description
Channel name STRING Name of channel to create.

Comments

• CID sent should be the same as used with CA_PROTO_SEARCH.

Response

Field Value Description
Command CA_PROTO_CREATE_CHAN
Payload size 0 Must be 0
Data type DBR type Native channel data type
Data count >= 0 Native channel data count
CID Same as request Channel client ID
SID SID provided by server Channel server ID

Table: Table 38. Header

Comments

• SID will be associated with CID on the server and will be reused sending certain commands that require it as a
parameter.

• SID will be valid until the channel is cleared using CA_PROTO_CLEAR or server destroys the PV the channel
references.

344 Chapter 1. How this documentation is organized

EPICS Documentation

CA_PROTO_WRITE_NOTIFY

Command CA_PROTO_WRITE_NOTIFY
ID 19 (0x13)
Description Writes new channel value. Sent over TCP.

Request

Field Value Description
Command CA_PROTO_WRITE_NOTIFY Command identifier
Payload size Size of DBR formatted payload Size of padded payload
Data type DBR type Format of payload
Data count ELEMENT_COUNT Number of elements in payload
SID SID provided by server Server channel ID
IOID Client provided IOID Request ID

Table: Table 39. Header

Name Type Value Description
DBR format-
ted data

DBR DBR format-
ted data

Value stored as DBR type specified in Data type field. Data count specifies
number of elements of DBR value field.

Table: Table 40. Payload

Response

Field Value Description
Command CA_PROTO_WRITE_NOTIFY Command identifier
Payload size 0 Must be 0
Data type Same as request Format of data written
Data count Same as request Number of elements written
Status Status code Status of write success
IOID Same as request Request ID

Table: Table 41. Header

1.29. Channel Access Protocol Specification 345

EPICS Documentation

CA_PROTO_CLIENT_NAME

Command CA_PROTO_CLIENT_NAME
ID 20 (0x14)
Description Sends local username to virtual circuit peer. This name identifies the user and affects access rights.

Request

Field Value Description
Command CA_PROTO_CLIENT_NAME Command identifier
Payload size >=0 Length of string in payload
Reserved 0 Must be 0
Reserved 0 Must be 0
Reserved 0 Must be 0
Reserved 0 Must be 0

Table: Table 42. Header

Name Type Value Description
User name STRING 0-terminated username string

Table: Table 43. Payload

Comments

• This is a one-way message and will not receive response.

• String in payload must be 0 padded to a length that is multiple of 8.

• Sent over TCP.

CA_PROTO_HOST_NAME

Command CA_PROTO_HOST_NAME
ID 21 (0x15)
Description Sends local host name to virtual circuit peer. This name will affect access rights. Sent over TCP.

Request

Field Value Description
Command 21 Command identifier for CA_PROTO_HOST_NAME.
Payload size Size of payload Length of host name string.
Reserved 0 Must be 0.
Reserved 0 Must be 0.
Reserved 0 Must be 0.
Reserved 0 Must be 0.

346 Chapter 1. How this documentation is organized

EPICS Documentation

Table: Table 44. Header

Name Type Value Description
Host name STRING Client host name.

Table: Table 45. Payload

Comments

• This is one-way message and will receive no response.

CA_PROTO_ACCESS_RIGHTS

Com-
mand

CA_PROTO_ACCESS_RIGHTS

ID 22 (0x16)
De-
scrip-
tion

Notifies of access rights for a channel. This value is determined based on host and client name and may
change during runtime. Client cannot change access rights nor can it explicitly query its value, so last
received value must be stored.

Response

Field Value Description
Command 22 Command identifier for CA_PROTO_ACCESS_RIGHTS.
Payload size 0 Must be 0.
Reserved 0 Must be 0.
Reserved 0 Must be 0.
CID Channel CID Channel affected by change.
Access Rights Access Rights Access rights for given channel.

Table: Table 46. Header

Comments

• Access Rights affect CA_PROTO_READ_NOTIFY, CA_PROTO_WRITE_NOTIFY and CA_PROTO_WRITE.

• CA_PROTO_ACCESS_RIGHTSwill be sent immediately after a channel is created using CA_PROTO_CREATE_CHAN.
If they change during runtime, this message sent to report new value.

• Changes are only sent to currently connected channels, since it requires valid CID.

• Sent over TCP.

1.29. Channel Access Protocol Specification 347

EPICS Documentation

CA_PROTO_SIGNAL

Command CA_PROTO_SIGNAL
ID 25 (0x19)
Description Obsolete.

CA_PROTO_CREATE_CH_FAIL

Com-
mand

CA_PROTO_CREATE_CH_FAIL

ID 26 (0x1A)
Descrip-
tion

Reports that channel creation failed. This response is sent to when channel creation in
CA_PROTO_CREATE_CHAN fails.

Response

Field Value Description
Command CA_PROTO_CREATE_CH_FAIL Command identifier
Reserved 0 Must be 0
Reserved 0 Must be 0
Reserved 0 Must be 0
CID Same as request Client channel ID
Reserved 0 Must be 0

Table: Table 47. Header

Comments

• Sent over TCP.

CA_PROTO_SERVER_DISCONN

Com-
mand

CA_PROTO_SERVER_DISCONN

ID 27 (0x1B)
Descrip-
tion

Notifies the client that server has disconnected the channel. This may be since the channel has been
destroyed on server. Sent over TCP.

348 Chapter 1. How this documentation is organized

EPICS Documentation

Response

Field Value Description
Command CA_PROTO_SERVER_DISCONN Command identifier
Reserved 0 Must be 0
Reserved 0 Must be 0
Reserved 0 Must be 0
CID CID provided by client CID that was provided during CA_PROTO_CREATE_CHAN
Reserved 0 Must be 0

Table: Table 48. Header

1.29.11 Payload Data Types

Channel access defines special structures to transferring data. These types are organized in typed hierarchies with loose
inheritance. There are six basic data types: DBR_STRING, DBR_SHORT, DBR_FLOAT, DBR_ENUM, DBR_CHAR, DBR_LONG
and DBR_DOUBLE. The type DBR_INT is present as an alias for DBR_SHORT. Each of these types can represent an array
of elements.

In addition to element values, some DBR types include meta-data. These types are status (DBR_STS_*), time stamp
(DBR_TIME_*), graphic (DBR_GR_*) and control (DBR_CTRL_*). All these structures contain value as the last
field.

All DBR data MUST be zero padded to ensure that message body length is a multiple of 8 bytes. Therefore, when
receiving a message, it is necessary to use the DBR type and element count to determine the number of body bytes to
use. Additional body bytes MUST be ignored.

In addition to zero padding at the end of the message, some padding is placed between the meta-data and the value
array.

The following table lists the identifier, meta-data size, padding between meta-data and value, and value element sizes
of each DBR type.

Name ID Meta size padding Element size
DBR_STRING 0 0 0 40
DBR_INT 1 0 0 2
DBR_SHORT 1 0 0 2
DBR_FLOAT 2 0 0 4
DBR_ENUM 3 0 0 2
DBR_CHAR 4 0 0 1
DBR_LONG 5 0 0 4
DBR_DOUBLE 6 0 0 8
DBR_STS_STRING 7 4 0 40
DBR_STS_INT 8 4 0 2
DBR_STS_SHORT 8 4 0 2
DBR_STS_FLOAT 9 4 0 4
DBR_STS_ENUM 10 4 0 2
DBR_STS_CHAR 11 4 1 1
DBR_STS_LONG 12 4 0 4
DBR_STS_DOUBLE 13 4 4 8
DBR_TIME_STRING 14 12 0 40

continues on next page

1.29. Channel Access Protocol Specification 349

EPICS Documentation

Table 3 – continued from previous page
Name ID Meta size padding Element size
DBR_TIME_INT 15 12 2 2
DBR_TIME_SHORT 15 12 2 2
DBR_TIME_FLOAT 16 12 0 4
DBR_TIME_ENUM 17 12 2 2
DBR_TIME_CHAR 18 12 3 1
DBR_TIME_LONG 19 12 0 4
DBR_TIME_DOUBLE 20 12 4 8
DBR_GR_STRING 21 4 0 40
DBR_GR_INT 22 GR_INT 0 2
DBR_GR_SHORT 22 GR_INT 0 2
DBR_GR_FLOAT 23 GR_REAL 2 4
DBR_GR_ENUM 24 GR_ENUM 0 2
DBR_GR_CHAR 25 GR_INT 1 1
DBR_GR_LONG 26 GR_INT 0 4
DBR_GR_DOUBLE 27 GR_REAL 0 8
DBR_CTRL_STRING 28 4 0 40
DBR_CTRL_INT 29 CTRL_INT 0 2
DBR_CTRL_SHORT 29 CTRL_INT 0 2
DBR_CTRL_FLOAT 30 CTRL_REAL 0 2
DBR_CTRL_ENUM 31 GR_ENUM 0 2
DBR_CTRL_CHAR 32 CTRL_INT 1 1
DBR_CTRL_LONG 33 CTRL_INT 0 4
DBR_CTRL_DOUBLE 34 CTRL_REAL 0 8
DBR_PUT_ACKT 35 ? ? 2
DBR_PUT_ACKS 36 ? ? 2
DBR_STSACK_STRING 37 ? ? 40
DBR_CLASS_NAME 38 ? ? 40

Table: Table 49. DBRs

DBR_STS_* meta-data

Alarm meta-data. Length: 4 bytes

struct metaSTS {
epicsInt16 status;
epicsInt16 severity;

};

DBR_TIME_* meta-data

Alarm and time stamp meta-data. Length: 12 bytes

struct metaTIME {
epicsInt16 status;
epicsInt16 severity;
epicsInt32 secondsSinceEpoch;
epicsUInt32 nanoSeconds;

};

350 Chapter 1. How this documentation is organized

EPICS Documentation

Note that the EPICS Epoch is 1990-01-01T00:00:00Z. This is 631152000 seconds after the POSIX Epoch of 1970-01-
01T00:00:00Z.

DBR_GR_SHORT meta-data

Alarm and integer display meta-data (no timestamp). Length: ?? bytes

struct metaGR_INT {
epicsInt16 status;
epicsInt16 severity;
char units[8];
epicsInt16 upper_display_limit;
epicsInt16 lower_display_limit;
epicsInt16 upper_alarm_limit;
epicsInt16 upper_warning_limit;
epicsInt16 lower_warning_limit;
epicsInt16 lower_alarm_limit;

};

DBR_GR_CHAR meta-data

Alarm and integer display meta-data (no timestamp). Length: ?? bytes

struct metaGR_INT {
epicsInt16 status;
epicsInt16 severity;
char units[8];
epicsInt8 upper_display_limit;
epicsInt8 lower_display_limit;
epicsInt8 upper_alarm_limit;
epicsInt8 upper_warning_limit;
epicsInt8 lower_warning_limit;
epicsInt8 lower_alarm_limit;

};

DBR_GR_FLOAT meta-data

Alarm and floating point display meta-data (no timestamp). Length: ?? bytes

struct metaGR_FLOAT {
epicsInt16 status;
epicsInt16 severity;
epicsInt16 precision;
epicsInt16 padding;
char units[8];
epicsFloat32 upper_display_limit;
epicsFloat32 lower_display_limit;
epicsFloat32 upper_alarm_limit;
epicsFloat32 upper_warning_limit;
epicsFloat32 lower_warning_limit;

(continues on next page)

1.29. Channel Access Protocol Specification 351

EPICS Documentation

(continued from previous page)

epicsFloat32 lower_alarm_limit;
};

DBR_GR_DOUBLE meta-data

Alarm and floating point display meta-data (no timestamp). Length: ?? bytes

struct metaGR_FLOAT {
epicsInt16 status;
epicsInt16 severity;
epicsInt16 precision;
epicsInt16 padding;
char units[8];
epicsFloat64 upper_display_limit;
epicsFloat64 lower_display_limit;
epicsFloat64 upper_alarm_limit;
epicsFloat64 upper_warning_limit;
epicsFloat64 lower_warning_limit;
epicsFloat64 lower_alarm_limit;

};

GR_ENUM and CTRL_ENUM meta-data

Alarm and enumerated display meta-data (no timestamp). Length: ?? bytes

struct metaGR_ENUM {
epicsInt16 status;
epicsInt16 severity;
epicsInt16 number_of_string_used;
char strings[16][26];

};

The strings field is an array of 16 string of 26 characters. The number_of_string_used gives the number of entries
in the strings field which are valid. Additional strings should be ignored, even if they contain non-null bytes.

1.29.12 Constants

Port numbers

Although there is no requirement as to which port numbers are used by either servers or clients, there are some standard
values which must be used as defaults, unless overridden by application.

Port numbers are dependent on protocol versions and are calculated using the following definitions:

CA_PORT_BASE = 5056

CA_SERVER_PORT = CA_PORT_BASE + MAJOR_PROTOCOL_VERSION * 2

CA_REPEATER_PORT = CA_PORT_BASE + MAJOR_PROTOCOL_VERSION * 2 + 1

Based on protocol version described in this document (4.11), port numbers used are CA_SERVER_PORT = 5064 and
CA_REPEATER_PORT = 5065.

352 Chapter 1. How this documentation is organized

EPICS Documentation

Since registration of port numbers with IANA and in the interest of compatibility, the version numbers are unlikely to
change. Therefore, the port numbers described here (5064 and 5065) may be considered final.

Representation of constants

This section lists various constants, their types and values used by protocol.

Some constants can be combined using logical OR operation. Example: Monitor mask of DBE_VALUE and DBE_ALARM
are combined using (DBE_VALUE or DBE_ALARM) resulting in (1 or 4 == 5).

To query whether a certain value is present in such combined value, and operation is used. Example: to query whether
DBE_ALARM of monitor mask is set, (DBE_VALUE and MASK > 0)will return 0 if DBE_VALUE is not present, otherwise
DBE_ALARM is present.

Monitor Mask

Indicates which changes to the value should be reported back to client library. Different values can be combined using
logical OR operation.

Type: not defined, depends on the field it is in (usually UINT16)

• DBE_VALUE - value 1 (0x01) - Value change events are reported. Value changes take into consideration a dead
band within which the value changes are not reported.

• DBE_LOG - value 2 (0x02) - Log events are reported. Similar to DBR_VALUE, DBE_LOG defines a different dead
band value that determines frequency of updates.

• DBE_ALARM - value 4 (0x04) - Alarm events are reported whenever alarm value of the channel changes.

• DBE_PROPERTY - value 8 (0x08) - Property events are reported when some metadata value associated with the
channel changes. (Introduced in EPICS Base 3.14.11).

Notes

• CA Servers SHOULD ignore unknown monitor mask bits.

• Older PCAS versions will respond to unknown bits with ECA_BADMASK.

Search Reply Flag

Indicates whether server should reply to failed search messages. If a server does not know about channel name, it has
the option of replying to request or ignoring it. Usually, servers contacted through address list will receive request for
reply.

Type: not defined, depends on the field it is in (usually UINT16).

• DO_REPLY - value 10 (0x0a) - Server should reply to failed search requests.

• DONT_REPLY - value 5 (0x05) - Server should ignore failed requests.

1.29. Channel Access Protocol Specification 353

https://iana.org

EPICS Documentation

Access Rights

Defines access rights for a given channel. Access rights are defined as logical OR’ed values of allowed access.

Type: not defined, depends on the field it is in (usually UINT16).

• CA_PROTO_ACCESS_RIGHT_READ - value 1 (0x01) - Read access is allowed

• CA_PROTO_ACCESS_RIGHT_WRITE - value 2 (0x02) - Write access is allowed.

As a reference, the following values are valid.

• 0 - No access

• 1 - Read access only

• 2 - Write access only

• 3 - Read and write access

Servers MUST set undefined bits to zero. Clients MUST ignore undefined bits in this field.

1.29.13 Example message

This example shows construction of messages. For details of individual structures, see message and data type reference
(CA_PROTO_READ_NOTIFY and DBR_GR_INT16).

A client will send CA_PROTO_READ_NOTIFY message with the following contents.

• Data type: DBR_GR_INT16

• Element count: 5

• Server ID: 22 (obtained during channel creation)

• Sequence ID: 56 (each read or write request increases value by one)

The message would be represented as follows:

00 0F (command) 00 00 (payload size) 00 16 (data type) 00 05 (element count)
00 00 00 16 (server ID) 00 00 00 38 (sequence ID)

Server would respond with success and return requested value with individual DBR_GR_INT16 fields having the fol-
lowing values.

• Status: ECA_NORMAL

• Severity: NO_ALARM (0)

00 0f (command) 00 20 (payload size) 00 16 (data type) 00 05 (element count)
00 00 00 16 (server ID) 00 00 00 38 (sequence ID)
00 05 00 02 43 6f 75 6e 74 73 00 00 00 0a 00 00
00 08 00 06 00 04 00 02 00 00 00 00 00 00 00 00

8 6 4 2 0 0 0 0

354 Chapter 1. How this documentation is organized

EPICS Documentation

1.29.14 Repeater Operation

A repeater MUST be used by clients to collect CA_PROTO_RSRV_IS_UP messages. Each client host will have one
repeater.

Startup

Each client MUST test for presence of repeater on startup, before any access to EPICS hosts is made. This check is made
by attempting to bind to CA_REPEATER_PORT. If binding fails, the client may assume the repeater is already running
and may attempt to register. This is done by sending CA_REPEATER_REGISTER datagram to CA_REPEATER_PORT.
If repeater is already active, it will respond with CA_REPEATER_CONFIRM datagram back to client. At this point the
registration is complete, and the repeater will begin forwarding messages to the client.

If binding succeeds, then this client process MUST either close the bound socket (and report at error) or begin func-
tioning as a repeater.

If an error is encountered with sending CA_REPEATER_REGISTER, then the binding test SHOULD be repeated after a
short timeout (1 second is RECOMMENDED).

Client detection

The repeater SHOULD test to see if its clients exist by periodically attempting to bind to their ports. If unsuccessful
when attempting to bind to the client’s port, then the repeater concludes that the client no longer exists. A technique
using connected UDP sockets and ICMP destination unreachable MAY also used. If a client is determined to no longer
be present then the repeater un-registers that client and no longer sends messages to it.

Operation

Each message the repeater receives MUST be forwarded to all registered clients.

Shutdown

Repeater should not shutdown on its own, if it does, there should be no active clients registered with it.

1.29.15 Searching Strategy

This section describes one possible strategy for handling CA_PROTO_SEARCH messages by a CA client. It is designed
to limit the maximum rate at which search messages are sent to avoid overwhelming servers.

For each outstanding search request the following information is kept.

struct searchPV {
const char *pvname;
epicsTimeStamp nextSend;
double intervalMult;

};

A priority queue should be maintained which is sorted in order of increasing nextSend.

When a new search request is made, a new searchPV is added to the queue with initialMult at a minimum (eg.
0.05 sec.) and nextSend at the present time plus nextSend.

When a search request is canceled it should be removed from the queue.

1.29. Channel Access Protocol Specification 355

EPICS Documentation

A task should run whenever the first entry expires (nextSend before the present time). This task should extract some
expired entries up to a maximum limit (eg. enough for 4 UDP packets).

Search messages are then sent for these entries and their intervalMult is increased (eg. doubled), their nextSend is
set to the present time plus nextSend, and they are re-added to the queue.

The task should then wait for the minimum search interval (eg. 0.05 sec.) before checking the queue again. This
prevents a flood of search messages.

The combination of the minimum interval between sending search messages, and the limit on the maximum number
of messages sent in each interval, acts to limit to total network bandwidth consumed by searches.

1.29.16 ECA Error/Status Codes

This section covers return codes and exceptions that can occur during CA command processing. In general, exceptions
will be used to report various events to the application. Return codes are predefined values for conditions that can occur,
where as exceptions are actually reported. Apart from exceptions that occur on server or due to network transport,
additional error conditions may be reported on the client side as local exceptions.

Return codes are represented as UINT16. The 3 least significant bits indicate severity, remaining 13 bits are return code
ID.

Return codes are communicated in the protocol by the CA_PROTO_READ_NOTIFY, CA_PROTO_WRITE_NOTIFY, monitor
subscription responses, and the CA_PROTO_ERROR responses.

Severity codes

Code Value Description
CA_K_SUCCESS 1 Successful (not an error)
CA_K_WARNING 0 Not successful
CA_K_INFO 3 Informational (not an error)
CA_K_ERROR 2 Recoverable failure
CA_K_SEVERE 4 None recoverable failure

Presently defined error conditions

Code Severity ID Value Description
ECA_NORMAL CA_K_SUCCESS 0 0x001 Normal successful completion
ECA_ALLOCMEM CA_K_WARNING 6 0x030 Unable to allocate additional dynamic memory
ECA_TOLARGE CA_K_WARNING 9 0x048 The requested data transfer is greater than available memory or EPICS_CA_MAX_ARRAY_BYTES
ECA_TIMEOUT CA_K_WARNING 10 0x050 User specified timeout on IO operation expired
ECA_BADTYPE CA_K_ERROR 14 0x072 The data type specified is invalid
ECA_INTERNAL CA_K_FATAL 17 0x08e Channel Access Internal Failure
ECA_DBLCLFAIL CA_K_WARNING 18 0x090 The requested local DB operation failed
ECA_GETFAIL CA_K_WARNING 19 0x098 Channel read request failed
ECA_PUTFAIL CA_K_WARNING 20 0x0a0 Channel write request failed
ECA_BADCOUNT CA_K_WARNING 22 0x0b0 Invalid element count requested
ECA_BADSTR CA_K_ERROR 23 0x0ba Invalid string
ECA_DISCONN CA_K_WARNING 24 0x0c0 Virtual circuit disconnect
ECA_EVDISALLOW CA_K_ERROR 26 0x0d2 Request inappropriate within subscription (monitor) update callback
ECA_BADMONID CA_K_ERROR 30 0x0f2 Bad event subscription (monitor) identifier
ECA_BADMASK CA_K_ERROR 41 0x14a Invalid event selection mask
ECA_IODONE CA_K_INFO 42 0x153 IO operations have completed

continues on next page

356 Chapter 1. How this documentation is organized

EPICS Documentation

Table 4 – continued from previous page
Code Severity ID Value Description
ECA_IOINPROGRESS CA_K_INFO 43 0x15b IO operations are in progress
ECA_BADSYNCGRP CA_K_ERROR 44 0x162 Invalid synchronous group identifier
ECA_PUTCBINPROG CA_K_ERROR 45 0x16a Put callback timed out
ECA_NORDACCESS CA_K_WARNING 46 0x170 Read access denied
ECA_NOWTACCESS CA_K_WARNING 47 0x178 Write access denied
ECA_ANACHRONISM CA_K_ERROR 48 0x182 Requested feature is no longer supported
ECA_NOSEARCHADDR CA_K_WARNING 49 0x188 Empty PV search address list
ECA_NOCONVERT CA_K_WARNING 50 0x190 No reasonable data conversion between client and server types
ECA_BADCHID CA_K_ERROR 51 0x19a Invalid channel identifier
ECA_BADFUNCPTR CA_K_ERROR 52 0x1a2 Invalid function pointer
ECA_ISATTACHED CA_K_WARNING 53 0x1a8 Thread is already attached to a client context
ECA_UNAVAILINSERV CA_K_WARNING 54 0x1b0 Not supported by attached service
ECA_CHANDESTROY CA_K_WARNING 55 0x1b8 User destroyed channel
ECA_BADPRIORITY CA_K_ERROR 56 0x1c2 Invalid channel priority
ECA_NOTTHREADED CA_K_ERROR 57 0x1ca Preemptive callback not enabled - additional threads may not join context
ECA_16KARRAYCLIENT CA_K_WARNING 58 0x1d0 Client’s protocol revision does not support transfers exceeding 16k bytes
ECA_CONNSEQTMO CA_K_WARNING 59 0x1d9 Virtual circuit connection sequence aborted
ECA_UNRESPTMO CA_K_WARNING 60 0x1e0 ?

Historical error conditions. Servers and clients SHOULD NOT send these codes, but MAY receive them.

1.29. Channel Access Protocol Specification 357

EPICS Documentation

Code Severity ID Value Description
ECA_MAXIOC CA_K_ERROR 1 0x00a Maximum simultaneous IOC connections exceeded
ECA_UKNHOST CA_K_ERROR 2 0x012 Unknown internet host
ECA_UKNSERV CA_K_ERROR 3 0x01a Unknown internet service
ECA_SOCK CA_K_ERROR 4 0x022 Unable to allocate a new socket
ECA_CONN CA_K_WARNING 5 0x028 Unable to connect to internet host or service
ECA_UKNCHAN CA_K_WARNING 7 0x038 Unknown IO channel
ECA_UKNFIELD CA_K_WARNING 8 0x040 Record field specified inappropriate for channel specified
ECA_NOSUPPORT CA_K_WARNING 11 0x058 Sorry, that feature is planned but not supported at this time
ECA_STRTOBIG CA_K_WARNING 12 0x060 The supplied string is unusually large
ECA_DISCONNCHID CA_K_ERROR 13 0x06a The request was ignored because the specified channel is dis-

connected
ECA_CHIDNOTFND CA_K_INFO 15 0x07b Remote Channel not found
ECA_CHIDRETRY CA_K_INFO 16 0x083 Unable to locate all user specified channels
ECA_DBLCHNL CA_K_WARNING 25 0x0c8 Identical process variable name on multiple servers
ECA_ADDFAIL CA_K_WARNING 21 0x0a8 Channel subscription request failed
ECA_BUILDGET CA_K_WARNING 27 0x0d8 Database value get for that channel failed during channel search
ECA_NEEDSFP CA_K_WARNING 28 0x0e0 Unable to initialize without the vxWorks VX_FP_TASK task op-

tion set
ECA_OVEVFAIL CA_K_WARNING 29 0x0e8 Event queue overflow has prevented first pass event after event

add
ECA_NEWADDR CA_K_WARNING 31 0x0f8 Remote channel has new network address
ECA_NEWCONN CA_K_INFO 32 0x103 New or resumed network connection
ECA_NOCACTX CA_K_WARNING 33 0x108 Specified task isn’t a member of a CA context
ECA_DEFUNCT CA_K_FATAL 34 00x116 Attempt to use defunct CA feature failed
ECA_EMPTYSTR CA_K_WARNING 35 0x118 The supplied string is empty
ECA_NOREPEATER CA_K_WARNING 36 0x120 Unable to spawn the CA repeater thread- auto reconnect will

fail
ECA_NOCHANMSG CA_K_WARNING 37 0x0128 No channel id match for search reply- search reply ignored
ECA_DLCKREST CA_K_WARNING 38 0x130 Reseting dead connection- will try to reconnect
ECA_SERVBEHIND CA_K_WARNING 39 0x138 Server (IOC) has fallen behind or is not responding- still wait-

ing
ECA_NOCAST CA_K_WARNING 40 0x140 No internet interface with broadcast available

1.29.17 Example conversation

This is example conversation between client and server. Client first establishes TCP connection to the server and
immediately requests creation of a channel. After server acknowledges channel creation, client reads the value of the
channel twice. First as a single string value and second as a DBR_GR_INT16 type. After the response to both queries
has been received, the channel is destroyed.

Client to Server
CA_PROTO_VERSION (handshake)
00 00 00 00 00 00 00 0b 00 00 00 00 00 00 00 00

0 0 0 11 0 0
CA_PROTO_CLIENT_NAME (handshake)
00 14 00 08 00 00 00 00 00 00 00 00 00 00 00 00 61 70 75 63 65 6c 6a 00

20 8 8 0 0 0 a p u c e l j \0
CA_PROTO_HOST_NAME (handshake)
00 15 00 08 00 00 00 00 00 00 00 00 00 00 00 00 63 73 6c 30 36 00 00 00

21 8 0 0 0 0 c s l 0 6 \0 \0 \0
(continues on next page)

358 Chapter 1. How this documentation is organized

EPICS Documentation

(continued from previous page)

CA_PROTO_CREATE_CHAN (request)
00 12 00 18 00 00 00 00 00 00 00 01 00 00 00 0b

18 24 0 0 1 11
61 70 75 63 65 6c 6a 3a 61 69 45 78 61 6d 70 6c 65 31 00 00 00 00 00 00
a p u c e l j : a i E x a m p l e 1 \0 \0 \0 \0 \0 \0

Server to Client
CA_PROTO_ACCESS_RIGHTS (handshake)
00 16 00 00 00 00 00 00 00 00 00 01 00 00 00 03

22 0 0 0 1 3
CA_PROTO_CREATE_CHAN (response)
00 12 00 00 00 06 00 01 00 00 00 01 00 00 00 04

18 0 6 1 1 4
|
Client to Server
CA_PROTO_READ_NOTIFY (request)
00 0f 00 00 00 00 00 01 00 00 00 04 00 00 00 01

15 0 0 1 4 1
CA_PROTO_READ_NOTIFY (request)
00 0f 00 00 00 16 00 01 00 00 00 04 00 00 00 02

15 0 22 1 4 02

Server to Client
CA_PROTO_READ_NOTIFY (response)
00 0f 00 08 00 00 00 01 00 00 00 01 00 00 00 01 30 00 00 00 00 06 00 01

15 8 0 1 1 1 0
CA_PROTO_READ_NOTIFY (response)
00 0f 00 20 00 16 00 01 00 00 00 01 00 00 00 02

15 32 22 1 1 02
00 05 00 02 43 6f 75 6e 74 73 00 00 00 0a 00 00

5 2 C o u n t s \0 \0 10 0
00 08 00 06 00 04 00 02 00 00 00 00 00 00 00 00

8 6 4 2 0 0 0 0

Client to Server
CA_PROTO_CLEAR_CHANNEL (request)
00 0c 00 00 00 00 00 00 00 00 00 04 00 00 00 01

12 0 0 0 4 1

Server to Client
CA_PROTO_CLEAR_CHANNEL (response)
00 0c 00 00 00 00 00 00 00 00 00 04 00 00 00 01

12 0 0 0 4 1

1.29. Channel Access Protocol Specification 359

EPICS Documentation

1.29.18 Glossary of Terms

IOC
Input/Output Controller.

PV
Process variable.

Virtual circuit
Reusable TCP connection between client and server, through which all PVs hosted by the server can be conveyed
to the client.

1.29.19 References

ID Author Reference Revi-
sion

Date Pub-
lisher

1 Jeffrey O.
Hill

Channel Access Reference Manual R3.14 2003

2 Java Channel Access 2.0.1 2003
3 Bradner, S. RFC 2119: Key words for use in RFCs to Indicate Require-

ment Levels
1997-
03

1.30 IOC Initialization

Tags: advanced

Table of Contents

• IOC Initialization

– Overview - Environments requiring a main program

– Overview - vxWorks

– Overview - RTEMS

– IOC Initialization

∗ Configure Main Thread

∗ General Purpose Modules

∗ Channel Access Links

∗ Driver Support

∗ Record Support

∗ Device Support

∗ Database Records

∗ Device Support again

∗ Scanning and Access Security

360 Chapter 1. How this documentation is organized

EPICS Documentation

∗ Initial Processing

∗ Channel Access Server

∗ Enable Record Processing

∗ Enable CA Server

– Pausing an IOC

– Changing iocCore fixed limits

∗ callbackSetQueueSize

∗ dbPvdTableSize

∗ scanOnceSetQueueSize

∗ errlogInit or errlogInit2

– initHooks

– Environment Variables

– Initialize Logging

1.30.1 Overview - Environments requiring a main program

If a main program is required (most likely on all environments except vxWorks and RTEMS), then initialization is
performed by statements residing in startup scripts which are executed by iocsh. An example main program is:

int main(int argc,char *argv[])
{
if (argc >= 2) {

iocsh(argv[1]);
epicsThreadSleep(.2);

}
iocsh(NULL);
epicsExit(0)
return 0;

}

The first call to iocsh executes commands from the startup script filename which must be passed as an argument to the
program. The second call to iocsh with a NULL argument puts iocsh into interactive mode. This allows the user to
issue the commands described in the chapter on “IOC Test Facilities” as well as some additional commands like help.

The command file passed is usually called the startup script, and contains statements like these:

< envPaths
cd ${TOP}
dbLoadDatabase "dbd/appname.dbd"
appname_registerRecordDeviceDriver pdbbase
dbLoadRecords "db/file.db", "macro=value"
cd ${TOP}/iocBoot/${IOC}
iocInit

The envPaths file is automatically generated in the IOC’s boot directory and defines several environment variables that
are useful later in the startup script. The definitions shown below are always provided; additional entries will be created
for each support module referenced in the application’s configure/RELEASE file:

1.30. IOC Initialization 361

EPICS Documentation

epicsEnvSet("ARCH","linux-x86")
epicsEnvSet("IOC","iocname")
epicsEnvSet("TOP","/path/to/application")
epicsEnvSet("EPICS_BASE","/path/to/base")

1.30.2 Overview - vxWorks

After vxWorks is loaded at IOC boot time, commands like the following, normally placed in the vxWorks startup script,
are issued to load and initialize the application code:

Many vxWorks board support packages need the following:
#cd <full path to IOC boot directory>
< cdCommands
cd topbin
ld 0,0, "appname.munch"

cd top
dbLoadDatabase "dbd/appname.dbd"
appname_registerRecordDeviceDriver pdbbase
dbLoadRecords "db/file.db", "macro=value"

cd startup
iocInit

The cdCommands script is automatically generated in the IOC boot directory and defines several vxWorks global vari-
ables that allow cd commands to various locations, and also sets several environment variables. The definitions shown
below are always provided; additional entries will be created for each support module referenced in the application’s
configure/RELEASE file:

startup = "/path/to/application/iocBoot/iocname"
putenv "ARCH=vxWorks-68040"
putenv "IOC=iocname"
top = "/path/to/application"
putenv "TOP=/path/to/application"
topbin = "/path/to/application/bin/vxWorks-68040"
epics_base = "/path/to/base"
putenv "EPICS_BASE=/path/to/base"
epics_basebin = "/path/to/base/bin/vxWorks-68040"

The ld command in the startup script loads EPICS core, the record, device and driver support the IOC needs, and any
application specific modules that have been linked into it.

dbLoadDatabase loads database definition files describing the record/device/driver support used by the application..

dbLoadRecords loads record instance definitions.

iocInit initializes the various epics components and starts the IOC running.

362 Chapter 1. How this documentation is organized

EPICS Documentation

1.30.3 Overview - RTEMS

RTEMS applications can start up in many different ways depending on the board-support package for a particular
piece of hardware. Systems which use the Cexp package can be treated much like vxWorks. Other systems first read
initialization parameters from non-volatile memory or from a BOOTP/DHCP server. The exact mechanism depends
upon the BSP. TFTP or NFS filesystems are then mounted and the IOC shell is used to read commands from a startup
script. The location of this startup script is specified by a initialization parameter. This script is often similar or identical
to the one used with vxWorks. The RTEMS startup code calls

epicsRtemsInitPreSetBootConfigFromNVRAM(struct rtems_bsdnet_config *);

just before setting the initialization parameters from non-volatile memory, and

epicsRtemsInitPostSetBootConfigFromNVRAM(struct rtems_bsdnet_config *);

just after setting the initialization parameters. An application may provide either or both of these routines to perform
any custom initialization required. These function prototypes and some useful external variable declarations can be
found in the header file epicsRtemsInitHooks.h

1.30.4 IOC Initialization

An IOC is normally started with the iocInit command as shown in the startup scripts above, which is actually imple-
mented in two distinct parts. The first part can be run separately as the iocBuild command, which puts the IOC into a
quiescent state without allowing the various internal threads it starts to actually run. From this state the second com-
mand iocRun can be used to bring it online very quickly. A running IOC can be quiesced using the iocPause command,
which freezes all internal operations; at this point the iocRun command can restart it from where it left off, or the IOC
can be shut down (exit the program, or reboot on vxWorks/RTEMS). Most device support and drivers have not yet been
written with the possibility of pausing an IOC in mind though, so this feature may not be safe to use on an IOC which
talks to external devices or software.

IOC initialization using the iocBuild and iocRun commands then consists of the following steps:

Configure Main Thread

Provided the IOC has not already been initialized, initHookAtIocBuild is announced first.

The main thread’s epicsThreadIsOkToBlock flag is set, the message “Starting iocInit” is logged and epicsSignalInstall-
SigHupIgnore called, which on Unix architectures prevents the process from shutting down if it later receives a HUP
signal.

At this point, initHookAtBeginning is announced.

General Purpose Modules

Calls coreRelease which prints a message showing which version of iocCore is being run.

Calls taskwdInit to start the task watchdog. This accepts requests to watch other tasks. It runs periodically and checks
to see if any of the tasks is suspended. If so it issues an error message, and can also invoke callback routines registered
by the task itself or by other software that is interested in the state of the IOC. See “Task Watchdog” for details.

Starts the general purpose callback tasks by calling callbackInit. Three tasks are started at different scheduling priorities.

initHookAfterCallbackInit is announced.

1.30. IOC Initialization 363

EPICS Documentation

Channel Access Links

Calls dbCaLinkInit. The initializes the module that handles database channel access links, but does not allow its task
to run yet.

initHookAfterCaLinkInit is announced.

Driver Support

initDrvSup locates each device driver entry table and calls the init routine of each driver.

initHookAfterInitDrvSup is announced.

Record Support

initRecSup locates each record support entry table and calls the init routine for each record type.

initHookAfterInitRecSup is announced.

Device Support

initDevSup locates each device support entry table and calls its init routine specifying that this is the initial call.

initHookAfterInitDevSup is announced.

Database Records

initDatabase is called which makes three passes over the database performing the following functions:

1. Initializes the fields RSET, RDES, MLOK, MLIS, PACT and DSET for each record.

Calls record support’s init_record (first pass).

2. Convert each PV_LINK into a DB_LINK or CA_LINK

Calls any extended device support’s add_record routine.

3. Calls record support’s init_record (second pass).

Finally it registers an epicsAtExit routine to shut down the database when the IOC application exits.

Next dbLockInitRecords is called to create the lock sets.

Then dbBkptInit is run to initialize the database debugging module.

initHookAfterInitDatabase is announced.

Device Support again

initDevSup locates each device support entry table and calls its init routine specifying that this is the final call.

initHookAfterFinishDevSup is announced.

364 Chapter 1. How this documentation is organized

EPICS Documentation

Scanning and Access Security

The periodic, event, and I/O event scanners are initialized by calling scanInit, but the scan threads created are not
allowed to process any records yet.

A call to asInit initailizes access security. If this reports failure, the IOC initialization is aborted.

dbProcessNotifyInit initializes support for process notification.

After a short delay to allow settling, initHookAfterScanInit is announced.

Initial Processing

initialProcess processes all records that have PINI set to YES.

initHookAfterInitialProcess is announced.

Channel Access Server

The Channel Access server is started by calling rsrv_init, but its tasks are not allowed to run so it does not announce
its presence to the network yet.

initHookAfterCaServerInit is announced.

At this point, the IOC has been fully initialized but is still quiescent. initHookAfterIocBuilt is announced. If started
using iocBuild this command completes here.

Enable Record Processing

If the iocRun command is used to bring the IOC out of its initial quiescent state, it starts here.

initHookAtIocRun is announced.

The routines scanRun and dbCaRun are called in turn to enable their associated tasks and set the global variable
interruptAccept to TRUE (this now happens inside scanRun). Until this is set all I/O interrupts should have been
ignored.

initHookAfterDatabaseRunning is announced. If the iocRun command (or iocInit) is being executed for the first time,
initHookAfterInterruptAccept is announced.

Enable CA Server

The Channel Access server tasks are allowed to run by calling rsrv_run.

initHookAfterCaServerRunning is announced. If the IOC is starting for the first time, initHookAtEnd is announced.

A command completion message is logged, and initHookAfterIocRunning is announced.

1.30. IOC Initialization 365

EPICS Documentation

1.30.5 Pausing an IOC

The command iocPause brings a running IOC to a quiescent state with all record processing frozen (other than possibly
the completion of asynchronous I/O operations). A paused IOC may be able to be restarted using the iocRun command,
but whether it will fully recover or not can depend on how long it has been quiescent and the status of any device drivers
which have been running. The operations which make up the pause operation are as follows:

1. initHookAtIocPause is announced.

2. The Channel Access Server tasks are paused by calling rsrv_pause

3. initHookAfterCaServerPaused is announced.

4. The routines dbCaPause and scanPause are called to pause their associated tasks and set the global variable
interruptAccept to FALSE.

5. initHookAfterDatabasePaused is announced.

6. After logging a pause message, initHookAfterIocPaused is announced.

1.30.6 Changing iocCore fixed limits

The following commands can be issued after iocCore is loaded to change iocCore fixed limits. The commands should
be given before any dbLoadDatabase commands.

callbackSetQueueSize(size)
dbPvdTableSize(size)
scanOnceSetQueueSize(size)
errlogInit(buffersize)
errlogInit2(buffersize, maxMessageSize)

callbackSetQueueSize

Requests for the general purpose callback tasks are placed in a ring buffer. This command can be used to set the size for
the ring buffers. The default is 2000. A message is issued when a ring buffer overflows. It should rarely be necessary
to override this default. Normally the ring buffer overflow messages appear when a callback task fails.

dbPvdTableSize

Record instance names are stored in a process variable directory, which is a hash table. The default number of hash
entries is 512. dbPvdTableSize can be called to change the size. It must be called before any dbLoad commands and
must be a power of 2 between 256 and 65536. If an IOC contains very large databases (several thousand records) then
a larger hash table size speeds up searches for records.

366 Chapter 1. How this documentation is organized

EPICS Documentation

scanOnceSetQueueSize

scanOnce requests are placed in a ring buffer. This command can be used to set the size for the ring buffer. The default
is 1000. It should rarely be necessary to override this default. Normally the ring buffer overflow messages appear when
the scanOnce task fails.

errlogInit or errlogInit2

These commands can increase (but not decrease) the default buffer and maximum message sizes for the errlog message
queue. The default buffer size is 1280 bytes, the maximum message size defaults to 256 bytes.

1.30.7 initHooks

The inithooks facility allows application functions to be called at various states during ioc initialization. The states are
defined in initHooks.h, which contains the following definitions:

typedef enum {
initHookAtIocBuild = 0, / * Start of iocBuild/iocInit commands */
initHookAtBeginning,
initHookAfterCallbackInit,
initHookAfterCaLinkInit,
initHookAfterInitDrvSup,
initHookAfterInitRecSup,
initHookAfterInitDevSup,
initHookAfterInitDatabase,
initHookAfterFinishDevSup,
initHookAfterScanInit,
initHookAfterInitialProcess,
initHookAfterCaServerInit,
initHookAfterIocBuilt, / * End of iocBuild command */

initHookAtIocRun, / * Start of iocRun command */
initHookAfterDatabaseRunning,
initHookAfterCaServerRunning,
initHookAfterIocRunning, / * End of iocRun/iocInit commands */

initHookAtIocPause, / * Start of iocPause command */
initHookAfterCaServerPaused,
initHookAfterDatabasePaused,
initHookAfterIocPaused, / * End of iocPause command */

/ * Deprecated states, provided for backwards compatibility.
* These states are announced at the same point they were before,
* but will not be repeated if the IOC gets paused and restarted.
*/
initHookAfterInterruptAccept, / * After initHookAfterDatabaseRunning */
initHookAtEnd, / * Before initHookAfterIocRunning */

}initHookState;

typedef void (*initHookFunction)(initHookState state);
int initHookRegister(initHookFunction func);
const char *initHookName(int state);

1.30. IOC Initialization 367

EPICS Documentation

Any functions that are registered before iocInit reaches the desired state will be called when it reaches that state. The
initHookName function returns a static string representation of the state passed into it which is intended for printing.
The following skeleton code shows how to use this facility:

static initHookFunction myHookFunction;

int myHookInit(void)
{
return(initHookRegister(myHookFunction));

}

static void myHookFunction(initHookState state)
{
switch(state) {
case initHookAfterInitRecSup:
...
break;

case initHookAfterInterruptAccept:
...
break;

default:
break;

}
}

An arbitrary number of functions can be registered.

1.30.8 Environment Variables

Various environment variables are used by iocCore:

EPICS_CA_ADDR_LIST
EPICS_CA_AUTO_ADDR_LIST
EPICS_CA_CONN_TMO
EPICS_CAS_BEACON_PERIOD
EPICS_CA_REPEATER_PORT
EPICS_CA_SERVER_PORT
EPICS_CA_MAX_ARRAY_BYTES
EPICS_TS_NTP_INET
EPICS_IOC_LOG_PORT
EPICS_IOC_LOG_INET

For an explanation of the EPICS_CA_. . . and EPICS_CAS_. . . variables see the EPICS Channel Access Ref-
erence Manual. For an explanation of the EPICS_IOC_LOG_. . . variables see “iocLogClient” (To be added).
EPICS_TS_NTP_INET is used only on vxWorks and RTEMS, where it sets the address of the Network Time Pro-
tocol server. If it is not defined the IOC uses the boot server as its NTP server.

These variables can be set through iocsh via the epicsEnvSet command, or on vxWorks using putenv. For example:

epicsEnvSet("EPICS_CA_CONN_TMO,"10")

All epicsEnvSet commands should be issued after iocCore is loaded and before any dbLoad commands.

The following commands can be issued to iocsh:

368 Chapter 1. How this documentation is organized

EPICS Documentation

epicsPrtEnvParams - This shows just the environment variables used by iocCore.

epicsEnvShow - This shows all environment variables on your system.

1.30.9 Initialize Logging

Initialize the logging system. See the chapter on “IOC Error Logging” for details. The following can be used to direct
the log client to use a specific host log server.

epicsEnvSet("EPICS_IOC_LOG_PORT", "<port>")
epicsEnvSet("EPICS_IOC_LOG_INET", "<inet addr>")

These command must be given immediately after iocCore is loaded.

To start logging you must issue the command:

iocLogInit

1.31 How to Work with the EPICS Repository

Tags: beginner user developer advanced all

This document aims to show to software developers how to get the current EPICS Base code, modify it and publish the
changes.

1.31.1 Organization of the EPICS Git Repository

The main EPICS repository is hosted on Launchpad. The source code repository is at https://git.launchpad.net/
epics-base.

A mirror of the repository is available on Github: https://github.com/epics-base/epics-base.git Depending on your
location one or the the other may be faster.

All current and past EPICS Base versions are in the same repository on different branches.

EPICS 7

The current development branch is “core/master”. However this branch only acts as a kind of envelope. The actual
EPICS 7 code is divided into modules each of which lives on a separate branch.

To get the latest version do this:

git clone --recursive https://git.launchpad.net/epics-base
cd epics-base
git submodule update --remote

This requires at least git version 1.8. Older git versions may need a different procedure. If git clone --recursive
is not supported, do this instead:

git clone https://git.launchpad.net/epics-base
cd epics-base
git submodule update --init --reference .

1.31. How to Work with the EPICS Repository 369

https://launchpad.net/epics-base
https://git.launchpad.net/epics-base
https://git.launchpad.net/epics-base
https://github.com/epics-base/epics-base.git

EPICS Documentation

If git submodule update --remote is not supported, look up the branches of each module in the .gitmodule file,
then go into each module directory and check out the relevant branch manually.

Older EPICS Versions

There is a separate branch for each of the older EPICS Base versions: 3.13, 3.14, 3.15, and 3.16. (However there is no
3.12 branch.)

Use these to check out the latest developments of one of the older versions, for example to fix a bug in one of those
versions.

git clone --branch 3.14 https://git.launchpad.net/epics-base

Specific Releases

Individual releases as well as pre-releases and release candidates are tagged like R3.16.1, R7.0.1-pre or R7.0.1-rc1.
First clone the relevant branch, then check out the tag, e.g.:

git clone --branch 3.14 https://git.launchpad.net/epics-base
cd epics-base
git co R3.14.8

1.31.2 Making Changes

Changes should always be made against the head of the relevant branch, not against the release tags.

For bug fixes check out the branch where the bug appears first. The fix will be merged into newer EPICS versions by
the core developer team.

For new features better announce your idea on the core-talk@aps.anl.gov mailing list and ask which branch is most
appropriate. For revolutionary new features it is probably the EPICS 7 master branch respectively the branch of the
submodule as referenced in the .gitmodule file.

For each change create a new branch with a meaningful name.

git checkout -b branch-name

Then start working on your change. Don’t forget to write a test!

Maintaining Compatibility

Build and test your changes on as many systems as possible. Important operating systems are Linux, Windows, OS X,
vxWorks and RTEMS.

Keep in mind that in particular vxWorks 5 uses old compiler versions. Do not break working systems with dependencies
on new compiler versions. This means for example C++ 11 features.

EPICS up to 3.15 works with vxWorks 5.5 which uses gcc 3.3.2 with a quite old C++ implementation and EPICS 3.16
works with vxWorks 6.3 using gcc 3.4.4. Do not break that!

370 Chapter 1. How this documentation is organized

mailto:core-talk@aps.anl.gov

EPICS Documentation

Testing

All new features must come with automated tests to prove their functionality. This also helps to find out if future
changes break existing features.

There are several “test” directories. Choose the one appropriate for the test. Keep in mind that some tests may run
before all parts of Base are built. Details vary depending on the EPICS Base version.

EPICS Base comes with a testing framework which allows to run IOCs, set and read/compare values and more.

To add a test, you will typically create a xxxTest.c and probably some records in a xxxTest.db file. (Choose a suitable
name.) Also you need to edit the Makefile in the test directory as well as a file with a name like “epicsRun*Tests.c” to
include your new test.

Here is a basic example of a test code (xxxTest.c):

#include "dbAccess.h"
#include "dbUnitTest.h"
#include "testMain.h"
MAIN(xxxTest) {

epicsUInt32 value;

/* Announce how many test will be done, see comments below. */
testPlan(total_number_of_tests);

testdbPrepare();

/* Load your own IOC or one of the provided. */
/* "dbTestIoc" or "recTestIoc" may be suitable. */
testdbReadDatabase("recTestIoc.dbd", NULL, NULL);
recTestIoc_registerRecordDeviceDriver(pdbbase);

/* Load your records */
testdbReadDatabase("xxxTest.db", NULL, "MACRO=VALUE");

/* start up IOC */
testIocInitOk();

/* You may structure the test output with your own comments
* (This does not count as a test.)
*/

testDiag("##### This text goes to the test log #####");

/* Set values and check for success. Counts as 1 test.
* Make sure that DBF type matches your variable
*/

testdbPutFieldOk("record.FIELD", DBF_ULONG, value);

/* Get value and compare with expected result. Counts as 1 test.
* Make sure that DBF type matches your variable
*/

testdbGetFieldEqual("record.FIELD", DBF_ULONG, value);

/* Do some arbitrary test. Counts as 1 test. */
testOk(condition, formatstring, ...);

(continues on next page)

1.31. How to Work with the EPICS Repository 371

EPICS Documentation

(continued from previous page)

/* The same without your own message. Counts as 1 test. */
testOk1(condition);

/* Finish */
testIocShutdownOk();
testdbCleanup();
return testDone();

}

Your test should run (and succeed) when you execute

make runtests

1.31.3 Merging Your Work into EPICS Base

When done with your development, do not push it to the main repository (You probably do not have permission to do
so anyway). Instead push it to your personal repository on Launchpad.

Creating a Launchpad Account

If you do not have a Launchpad account yet, got to https://launchpad.net/ and click on “register”. With a Launchpad
account comes the possibility to have personal repositories. You will use these to push your changes. Don’t forget to
upload your public (not private!) ssh key (found in $HOME/.ssh/id_rsa.pub or similar) in order to be able to push to
your repository using ssh.

Pushing Your Work to Launchpad

Before pushing your work, you should first pull the latest version and merge it with your changes if necessary.

In your git working directory, create a new “remote” referring to your personal Launchpad repository. Launchpad will
create a new repository if necessary. You can use the same repository for multiple projects on EPICS Base as long as
you use different branch names.

git remote add launchpad git+ssh://username@git.launchpad.net/~username/epics-base
git push launchpad branch-name

After that you can go to the Launchpad web page related to that branch (https://code.launchpad.net/~username/
epics-base/+git/epics-base/+ref/branch-name) and click the “Propose for merging” link. The core developer team
will review your changes any may either merge them or request fixes.

You can push updates on the same branch at any time, even after making a merge request. The updates will automatically
be part of the merge request. Do not create a new merge request because of an update!

372 Chapter 1. How this documentation is organized

https://launchpad.net/
https://code.launchpad.net/~username/epics-base/+git/epics-base/+ref/branch-name
https://code.launchpad.net/~username/epics-base/+git/epics-base/+ref/branch-name

EPICS Documentation

1.32 Documentation contribution guide

1.32.1 For new contributors

“I’m a newcomer, and I’d like to fix an issue.”

Contacting another developer

If you have found a small error or missing piece of information and are unable to fix it yourself, you can email Tech-talk
at tech-talk@aps.anl.gov. Provide the details of the issue and another member of the community should be able to fix
it for you. You can find more information about using Tech-talk at https://epics.anl.gov/tech-talk/.

Creating an issue on GitHub

Finding the GitHub page and signing up

You can suggest a fix by yourself in the epics-docs GitHub repository. If you would like to create a new page or move
information between pages, please refer to the style guide later in this page. For instances where you wish to edit a
page, follow the GitHub link in the top-right of the page.

Following this link, will take you to the source page. If you don’t already have a GitHub account, go to the join GitHub
page and follow the instructions.

Creating an issue

At the top of the GitHub page, click on the “Issues” tab. If there are no issues already listed about the problem that you
want fixed, click the “New issue” button, give your issue a title and write a brief description, then submit it. If nobody
has picked up your issue after several days, email Tech-talk and a developer should pick it up.

1.32.2 Making a contribution

Structure

The various documents are divided by topic, for example:

• Getting started

• Process database

• Modules

• etc.

This documentation also follows the Diátaxis documentation framework. We recommend reading the Diátaxis docu-
mentation.

What this means for the EPICS documentation, is that documentation falls into 4 categories:

• Tutorials: for users to learn new concepts

• How-to guides: for users to achieve specific, predefined goals

• Explanations: for users to clarify their understanding of a concept

• References: for users to consult, when looking for specific information

1.32. Documentation contribution guide 373

mailto:tech-talk@aps.anl.gov
https://epics.anl.gov/tech-talk/
https://github.com/epics-docs/epics-docs
https://github.com/join
https://diataxis.fr/
https://diataxis.fr/

EPICS Documentation

Each of those type of page must be put in that order in the various topics. For example:

• Process database

– Making an IOC with linked PVs (tutorial)

– How to find which IOC provides a PV (guide)

– How to Avoid Copying Arrays with waveformRecord (guide)

– Process Database Concepts (explanation)

– Record reference (reference)

Tagging the document

To suggest the intended audience, we use a tag mechanism using sphinx-tags extension.

There are beginner, user, developer, advanced and all roles.

• beginner - articles for those who don’t know EPICS and want to familiarize with it. That should be mostly
articles about installation and basic concepts.

• user - articles for those who use EPICS during their work for example as operators, mostly with client applica-
tions.

• developer - articles for those who develop IOCs, extensions or drivers

• advanced - articles for those who want to understand advanced topics including build system, specifications and
details of protocols.

To tag the article, add a line specifying labels under the title in the source file. Tags are supported for .rst and .md.

Example for .rst:

.. tag::`beginner, user, developer`

Example for .md:

```{tags} tag1, tag2
```

Forking the repository

Once logged in and viewing the page on GitHub you wish to edit, click on the pencil icon to the top-right of the content.
If this is your first time editing, you will see with a page asking you to fork the repository before being able to edit.
Click through the link to do this, and GitHub will create a copy of the entire repository linked to your own account.
Feel free to edit any page in this repository. Your changes won’t show up in the main repository or the Read the Docs
site until you create a pull request.

374 Chapter 1. How this documentation is organized

https://sphinx-tags.readthedocs.io/

EPICS Documentation

Local setup and build

“How do I build the epics-doc documentation locally, and how do I serve it locally?” Being able to do this can be of
interest to check how your contribution will render before sharing it.

Using poetry

A practical solution to build the epics-docs documentation is to use Poetry. Poetry is a tool for dependency management
and packaging in Python. It’s reproducible, no matter what your environment is, and multi-platform (it works equally
well on Linux, macOS and Windows).

Please follow the Poetry documentation to install it.

Once installed, you can setup, build, and serve the epics-docs documentation in two steps:

1. Clone (with SSH) your epics-docs fork (see Forking the repository above) and change directory into it:

$ git clone git@github.com:your-user-name/epics-docs.git
$ cd epics-docs

2. Install Poetry dependencies (the “setup”) and build + serve the epics-docs documentation:

$ poetry install
$ poetry run sphinx-autobuild --re-ignore _tags/ . ./_build/html

At this point, you can open http://127.0.0.1:8000 in your internet browser and check the generated documentation by
yourself.

Using pip

Another solution for local builds is to use pip (ideally in a virtual environment), which comes pre-installed with most
modern python installations. From the pip website:

pip is the package installer for Python. You can use it to install packages from the Python Package Index
and other indexes

1. Follow the first step in the Using poetry section to locally clone the epics-docs repository.

2. Install the pip dependencies from requirements-dev.txt

$ python -m venv venv # Create a virtual environment for your local␣
→˓build
$. venv/bin/activate # Activate it
$ pip install -r requirements-dev.txt
$ sphinx-autobuild . ./_build/html

At this point, same as above, you can open http://127.0.0.1:8000 in your internet browser, and check the generated
documentation by yourself.

1.32. Documentation contribution guide 375

https://python-poetry.org/docs/
https://python-poetry.org/docs/#system-requirements
http://127.0.0.1:8000
https://pip.pypa.io/en/stable/
https://docs.python.org/3/library/venv.html
http://127.0.0.1:8000

EPICS Documentation

Reference setup and build

You can check for yourself how the project is built here: https://readthedocs.org/projects/epics/builds/, and then click
on the last “Passed” build (that is, the last build that succeeded), for example: https://readthedocs.org/projects/epics/
builds/21001074/.

Warning: Those commands are oriented to optimize the build in the Read the Docs environment. This might
not always be reproducible on your computer without some level of modifications depending on your own local
environment, such as your OS, your distribution, your shell interpreter, etc. This way is how Read the Docs builds
the documentation, but it isn’t always the most practical way (at least not for development/contribution purposes).

Edit and view your changes

Now that you know how to clone, setup, build, and serve the epics-docs documentation, you can edit any .rst or .md
file and check how sphinx will render your contribution.

After running $ poetry run sphinx-autobuild . ./_build/html, like described earlier, any modification will
update http://127.0.0.1:8000 automatically.

Style guide

This section covers the conventions when writing documentation.

You should write new documentation in Markdown. Some existing documentation might be in reStructuredText (RST),
but these pages should progressively be converted to Markdown.

If you’re unfamiliar with Markdown, you can look at the Basic Syntax page from the Markdown Guide website.

Another convention used is Semantic line breaks, which increase readability and make editing the source easier: add
line breaks after each sentence, after independent clauses (comma, semicolon, colon, dash), and before every relative
clause.

A configuration for Vale also exists in the repository, to help you write English documentation. You are not required
to fix every Vale warning, these are meant as advice.

To see those Vale warnings, install Vale by following the Vale Installation guide, and run vale path/to/your/file.
md.

Making a pull request

After you are satisfied with your changes, commit and push them to your fork. Keeping separate things in separate
commits will make reviewing easier. Finally submit the branch with your commits for review by creating a pull request.

To create a pull request, first click on the “Pull requests” tab at the top of GitHub. From here, click the green “New
pull request” button, which should take you to a page comparing the main repository to your fork. You should see any
commits you have made listed here. Clicking “Create pull request” will give you the opportunity to give your edits a
title and a brief description, before you submit them for review.

At this point, a maintainer of the repository will be able to review your changes to ensure they’re sensible and don’t
break anything. If all is well, they will approve the changes and merge them into the main repo. After the reviewer has
merged the pull request, Read the Docs will recompile the page and publish your changes.

376 Chapter 1. How this documentation is organized

https://readthedocs.org/projects/epics/builds/
https://readthedocs.org/projects/epics/builds/21001074/
https://readthedocs.org/projects/epics/builds/21001074/
http://127.0.0.1:8000
https://www.markdownguide.org/basic-syntax/
https://www.markdownguide.org/
https://sembr.org/
https://vale.sh/
https://vale.sh/docs/vale-cli/installation/

EPICS Documentation

1.32.3 Adding dependencies

When adding a dependency, make sure to add them to both Poetry and the requirement files.

For example, if you want to add the sphinx-foo extension, first run:

poetry add sphinx-foo

This command adds that extension to both pyproject.toml and poetry.lock. It also fetches the latest version and
pins it in pyproject.toml.

To add that dependency to the requirement files, take the version pinned in pyproject.toml, and make sure to pin
that same version in the requirements files.

For example, if you see in pyproject.toml:

sphinx-foo = "^1.1.2"

Then you must add to both requirements.txt and requirements-dev.txt:

sphinx-foo==1.1.2

1.32.4 Reviewing pull requests

From the point of view of a reviewer.

TODO: how to merge (merge commit (not FF))

TODO: say if pushing to PRs from a reviewer point of view is acceptable

1.33 How to run an EPICS Collaboration Meeting

Tags: user developer advanced

This page is intended for “lessons learned” by sites who have run collaboration meetings, as hints to help future meetings
run smoothly.

1.33.1 Organization

The EPICS Council now decides where meetings will be held, so there are usually 2 meetings a year, circulating
between the Americas, Europe and the Asia/Pacific region. Future meeting locations that have already been fixed are
usually listed here.

Collaboration meetings are usually 3 days long from Tuesday to Thursday or Wednesday to Friday, allowing for training
and smaller working groups on the other days of the week. You’ll need a big room for the full meeting, and some smaller
meeting rooms for any workshops and training sessions you host.

Also somewhere near the refreshment location a room for any exhibitions; past meetings have succeeded in attracting
companies who will a small sum to put up a display table at these meetings. Providing large-screen TVs or projectors
in the exhibition space allows EPICS-related projects to demonstrate their software.

Recent attendance has been between 80-130 people, but this depends on the number of users from the hosting site
and nearby. It can be difficult for government-funded workers (especially from US Department of Energy labs) to get
approval for travel to exotic locations though, so expect attendance to vary. Workshops can be around 30 people, but
may vary depending on the topic. If someone wants to run a workshop you can ask them for estimates on numbers.

1.33. How to run an EPICS Collaboration Meeting 377

EPICS Documentation

To include some hands-on training you may may provide PCs capable of running a virtual machine for students to use,
or ask them to bring their own laptops (which some will do anyway). Training is still possible without these, but would
consist of basic lectures and demo’s only. You would need to decide what kind of training you want, and organize some
people in the community to give it.

Topics for workshops should generally be aligned with interests of the hosts. It will take support on the host side to
make sure there is sufficient interest and attendance. Subgroups of developers such as the EPICS Core, CS-Studio and
AreaDetector groups may ask to hold a private developers meeting adjacent to the main meeting, which will usually
require providing a 10-15 seat meeting room with WiFi for each group for the period of their meeting.

1.33.2 Communications

If possible, start creating a website for the meeting before it is first announced to on tech-talk; some people will want
to be able to find out more about the location when they first hear about it, so the announcement should have a link to
that website.

Attendees from some countries such as China may have to navigate a quite long approvals process (internal, government
and visa) to be able to attend, and may need a letter of invitation from you to get those approvals. Provide enough
information so they know who to ask well in advance (3-4 months or more is advisable).

Eventually you’ll most probably need online registration of attendees and possibly speakers, as well as to provide
information about local hotels, transportation to/from nearby airports, and local tourist agencies for attendees’ partners.
Arranging a “partner programme” is usually unnecessary.

1.33.3 Facilities

For the main meeting, a hall with LCD projector(s) for computer connection and a PC to display the presentation files.
Most people will bring talks in MS PowerPoint, Adobe PDF and/or LibreOffice Impress formats (installing LibreOffice
on this machine is advised, but not essential if you give people notice). It saves time and confusion at these international
meetings if the PC can be configured with English language settings (Windows menus etc.). Providing a remote control
for the presentation program and a laser pointer is helpful.

Some presenters may want to use their own laptops for live demonstrations, or if they’re using a less common presen-
tation program (e.g. Apple’s Keynote).

In a large hall speakers should use a microphone if a PA is available; a radio-microphone is preferred.

The main hall (and ideally the other meeting rooms too) should have reliable, high-bandwidth WiFi internet access
since most people will bring a laptop or notebook PC and want to connect up during the meeting.

Laptop batteries don’t last more than a few hours, so there will be demand for power sockets in the hall too. If these
are not available at every seat, providing extension leads spread about the room is generally a good idea and is much
appreciated by attendees.

Refreshments should be available at the breaks mid-morning and mid-afternoon. If your institution can’t afford to fund
these itself it is acceptable to charge attendees a fee at registration to pay for them (exhibitors funds are also helpful
here). People will expect to pay for their own lunches, and also to pay to attend the conference dinner which is usually
held on the evening before the last day.

378 Chapter 1. How this documentation is organized

EPICS Documentation

1.33.4 Agenda

Setting an initial program structure gives presenters an idea of what topics the hosting institution may be particularly
interested in, but isn’t necessary.

In recent years the hosting site has been responsible for soliciting and collecting speakers names and talk titles; an
Indico website can perform much of the clerical work involved automatically, but the talks will still have to be manual
scheduled into the Agenda. Individual talks are usually allotted 15 minutes plus 5 minutes for questions, but some
topics may be given additional time. Recent meetings have also introduced “Lightning talks” which are 5 minutes long
with no question time, and these have proven popular and a good way to cover many topics in a short time.

The community will usually submit a number of submissions of presentations, but the hosts should expect to have to
do some additional solicitation to fill out the program. This can (should) be informed by topics the host institute is
interested in. Communications to the whole community about submitting talks should be sent to tech-talk.

1.33. How to run an EPICS Collaboration Meeting 379

	How this documentation is organized
	Getting started with EPICS
	System components
	Basic Attributes
	IOC Software Components
	IOC Database
	Database Scanning
	Record Support, Device Support and Device Drivers
	Database Monitors
	Network protocols
	Channel Access
	Client Services
	Search Server
	Connection Request Server
	Connection Management
	pvAccess
	Client Services
	Search Server
	Connection Request Server
	Connection Management

	Client Workstation Tools
	Examples of CA/pvAccess Tools
	Examples of other Tools

	References and further reading
	Appendix: Objects vs Process Variables discussion

	Installation Overview
	General workflow
	Which version should I chose?

	Installation on Linux / MacOS
	Scope of these instructions
	Prepare your system
	Install EPICS
	Test EPICS
	Create a demo/test ioc to test ca and pva
	Add the asyn package
	Install StreamDevice (by Dirk Zimoch, PSI)

	Installation on Windows
	Introduction
	EPICS
	EPICS on Windows
	Cygwin
	Build Time

	Required Tools
	Choice 1: Compiler
	Choice 2: Build Environment and Tool Installation
	MSYS2
	Chocolatey
	Windows Installers

	Choice 3: Static or DLL Build / Deployment
	Windows Path Names
	Put Tools in the PATH
	Install and Build
	Installation using MSYS2 and the MinGW Compilers
	Install tools
	Install compiler toolchains
	Update your installation regularly
	Download and build EPICS Base
	Quick test from MSYS2 Bash
	Quick test from Windows command prompt
	Create a demo/test IOC

	Installation using plain Windows and the Visual Studio compilers
	Install tools
	Using Chocolatey
	Manually
	Put tools in the Path

	Install the compiler
	Download and build EPICS Base
	Quick test from Windows command prompt
	Quick test from MSYS2 Bash
	Create a demo/test IOC

	Setting the system environment
	Required settings for Path
	Set environment using a batch or script from EPICS Base
	Set environment using the Windows settings

	EPICS Dependencies on CentOS 8
	Overview
	Packages required to build EPICS base
	Packages required by the sequencer
	Packages required by epics-modules/asyn
	Packages required by the Canberra and Amptek support in epics-modules/mca
	Packages required by the Linux drivers in epics-modules/measComp
	Packages required by areaDetector/ADSupport/GraphicsMagick
	Packages required by areaDetector/ADEiger
	Packages required to build aravis 7.0.2 for areaDetector/ADAravis
	Packages required to build areaDetector/ADVimba
	Packages required to build EDM
	Packages required to build MEDM

	Cross compiling to an old x86 Linux system
	Introduction
	Overview
	Crosstool-NG
	Downloading and extracting
	Compiling
	Configuring
	Compiling the toolchain

	EPICS dependencies
	readline
	ncurses

	Configure cross-compilation in EPICS
	Recompile EPICS base

	Example IOC
	Creating
	Configuring
	Compiling
	Executing

	Creating an IOC Application
	EPICS applications on Mac OS X
	How do I get EPICS applications to work with a Mac OS X firewall?

	Configuring vxWorks 6.x
	vxWorks 6.x Information
	Configuring a vxWorks 6.x image
	vxWorks 6.6 GNU Header stdexcept
	Adding a CR/CSR Master Window to the mv6100 BSP

	Configuring Tornado/vxWorks 5.5.x
	Tornado/vxWorks 5.5.x Information
	Tornado 2.2 (vxWorks 5.5.x)
	Installation
	Linux Hosting
	EPICS Support

	PowerPC Issues

	Common Database patterns
	Pull Alarm Status w/o Data
	Combined Setting and Readback

	How to avoid copying arrays with waveformRecord
	Introduction
	Example

	Application Developer’s Guide
	Getting Started
	Introduction
	Example IOC Application
	Check that EPICS_HOST_ARCH is defined
	Create the example application
	Inspect files
	Sequencer Example
	Build
	Inspect files
	Run the ioc example

	Channel Access Host Example
	iocsh
	Building IOC components
	Binding to IOC components
	Makefile rules
	Building a support application.
	Building the IOC application

	makeBaseApp.pl
	Usage
	Environment Variables:
	Description
	Tag Replacement within a Template
	makeBaseApp templetes provided with base
	support
	ioc
	example
	caClient
	caServer

	vxWorks boot parameters
	RTEMS boot procedure
	Booting from a BOOTP/DHCP/TFTP server
	Motorola PPCBUG boot parameters
	Motorola MOTLOAD boot parameters
	RTEMS NFS access
	RTEMS ‘Cexp’

	Build Facility
	Overview
	<top> Directory structure
	Install Directories
	Elements of build system
	Features
	Multiple host and target systems

	Build Requirements
	Host Environment Variable
	Software Prerequisites
	Path requirements
	Unix path
	Win32 PATH

	Directory names
	EPICS_HOST_ARCH environment variable

	Configuration Definitions
	Site-specific EPICS Base Configuration
	Site configuration
	Host configuration
	Target configuration
	R3.13 compatibility configuration

	Directory definitions
	Extension and Application Specific Configuration
	RELEASE file
	Modifying configure/RELEASE* files
	OS Class specific definitions
	Specifying T_A specific definitions
	Host and Ioc targets
	User specific override definitions

	Makefiles
	Name
	Included Files
	Contents of Makefiles
	Makefiles in directories containing subdirectories
	Makefiles in directories where components are to be built

	Simple Makefile examples

	Make
	Make vs. gnumake
	Frequently used Make commands
	Make targets
	Header file dependencies

	Makefile definitions
	Source file directories
	Posix C source code
	Breakpoint Tables
	Record Type Definitions
	Menus
	Expanded Database Definition Files
	Registering Support Routines for Expanded Database Definition Files
	Database Definition Files
	DBD install files
	Database Files
	DB install files
	Compile and link command options
	Options for all compile/link commands.
	Options for a target specific compile/link command.

	Libraries
	Specifying the library name.
	Specifying library source file names
	Specifying library object file names
	LIBOBJS definitions
	Specifying dependant libraries to be linked when creating a library
	The order of dependant libraries
	Specifying library DLL file names (deprecated)
	Specifying shared library version number
	Library example:

	Loadable libraries
	Combined object libraries (VxWorks only)
	Object Files
	State Notation Programs
	Scripts, etc.
	Include files
	Html and Doc files
	Templates
	Lex and yacc
	Products
	Specifying the product name.
	Specifying product object file names
	Specifying product source file names
	Specifying libraries to be linked when creating the product
	The order of dependant libraries
	Specifying product version number
	Generate version header
	Product static builds

	Test Products
	Test Scripts
	Miscellaneous Targets
	Installing Other Binaries
	Installing Other Libraries
	Win32 resource files
	TCL libraries
	Java class files
	Example 1
	Example 2

	Java jar file
	Example 3
	Example 4

	Java native method C header files
	Example 5

	User Created CONFIG* and RULES* files
	User Created File Types
	Assemblies
	Macros
	Example 6

	Table of Makefile definitions
	Configuration Files
	Base Configure Directory
	Base Configure File Descriptions
	Base configure/os File Descriptions
	Base src/tools File Descriptions

	Build Documentation Files
	Base Documentation Directory
	Base Documentation File Descriptions

	Startup Files
	Base Startup Directory
	Base Startup File Descriptions

	EPICS Process Database Concepts
	The EPICS Process Database
	Database Functionality Specification
	Scanning Specification
	Periodic Scanning
	Event Scanning
	I/O Interrupt Events
	User-defined Events
	Passive Scanning
	Channel Access Puts to Passive Scanned Records
	Database Links to Passive Record
	Forward Links
	Process Chains

	Channel Access Links
	Channel Access Input Links
	Channel Access Output Links
	Channel Access Forward Links

	Maximize Severity Attribute
	Phase
	PVAccess Links
	pv: Target PV name
	field: Structure field name
	local: Require local PV
	Q: Monitor queue depth
	pipeline: Monitor flow control
	proc: Request record processing (side-effects)
	sevr: Alarm propagation
	time: Time propagation
	monorder: Monitor processing order
	defer: Defer put
	retry: Put while disconnected
	always: CP/CPP always process
	Link semantics/behavior

	Address Specification
	Hardware Addresses
	INST
	VME Bus
	Allen-Bradley Bus
	Camac Bus
	Others

	Database Addresses
	Constants

	Conversion Specification
	Discrete Conversions
	Analog Conversions
	Linear Conversions
	Transducer Matches the I/O module
	Transducer Lower than the I/O module
	Transducer Positive and I/O module bipolar
	Combining Linear Conversion with an Amplifier

	Breakpoint Conversions
	Breakpoint Table
	Breakpoint Conversion Example
	Creating Breakpoint Tables

	Alarm Specification
	Alarm Severity
	Alarm Status
	Alarm Conditions Configured in the Database
	Limit Alarms
	State Alarms

	Alarm Handling

	Monitor Specification
	Rate Limits
	Channel Access Deadband Selection
	Value Change Monitors
	Archive Change Monitors
	Alarm Change Monitors
	Metadata Changes

	Client specific Filtering
	Event Filtering
	Rate Guarantee
	Rate Limit
	Value Change

	Control Specification
	Closing an Analog Control Loop
	Configuring an Interlock

	Database Definition
	Overview
	Summary of Database Syntax
	General Rules for Database Definition
	Keywords
	Unquoted Strings
	Quoted Strings
	Macro Substitution
	Escape Sequences
	Comments
	Define before referencing
	Multiple Definitions
	Filename Extensions

	Database Definition Statements
	path addpath – Path Definition
	Format

	include – Include Statement
	Format

	menu – Menu Definition
	Format
	Definitions
	Example

	recordtype – Record Type Definition
	Format
	Field Descriptor Rules
	Definitions
	Example

	device – Device Support Declaration
	Format
	Definitions
	Examples

	driver – Driver Declaration
	Format
	Definitions
	Examples

	registrar – Registrar Declaration
	Format
	Definitions
	Example

	variable – Variable Declaration
	Format
	Definitions
	Example

	function – Function Declaration
	Format
	Definitions
	Example

	breaktable – Breakpoint Table
	Format
	Definitions
	Example

	record – Record Instance
	Format
	Definitions
	Examples

	Record Information Item
	Record Attributes
	Breakpoint Tables – Discussion
	Menu and Record Type Include File Generation.
	Introduction
	dbdToMenuH.pl
	dbdToRecordtypeH.pl

	dbdExpand.pl
	dbLoadDatabase
	dbLoadRecords
	Example

	dbLoadTemplate
	Template File Syntax
	Template File Formats
	Example

	IOC Initialization
	Overview - Environments requiring a main program
	Overview - vxWorks
	Overview - RTEMS
	IOC Initialization
	Configure Main Thread
	General Purpose Modules
	Channel Access Links
	Driver Support
	Record Support
	Device Support
	Database Records
	Device Support again
	Scanning and Access Security
	Initial Processing
	Channel Access Server
	Enable Record Processing
	Enable CA Server

	Pausing an IOC
	Changing iocCore fixed limits
	callbackSetQueueSize
	dbPvdTableSize
	scanOnceSetQueueSize
	errlogInit or errlogInit2

	initHooks
	Environment Variables
	Initialize Logging

	IOC Access Security
	Features
	Limitations
	Definitions

	Quick Start
	Access Security Configuration File
	Simple Example
	Syntax Definition
	Discussion

	ascheck - Check Syntax of Access Configuration File
	IOC Access Security Initialization

	Database Configuration
	Access Security Group
	Subroutine Record Support
	Record Type Description

	Example:
	Summary of Functional Requirements
	Additional Requirements
	Performance
	Generic Implementation
	No Access Security within an IOC
	Defaults
	Access Security is Optional

	pvAccess (QSRV) Specific Features

	IOC Test Facilities
	Overview
	Database List, Get, Put
	dbl
	dbgrep
	dbla
	dba
	dbgf
	dbpf
	dbpr
	dbtr
	dbnr

	Breakpoints
	dbb
	dbd
	dbs
	dbc
	dbp
	dbap
	dbstat

	Trace Processing
	Error Logging
	eltc
	errlogInit, errlogInit2
	errlog

	Hardware Reports
	dbior
	dbhcr

	Scan Reports
	scanppl
	scanpel
	scanpiol

	General Time
	generalTimeReport
	installLastResortEventProvider
	NTPTime_Report
	NTPTime_Shutdown
	ClockTime_Report
	ClockTime_Shutdown

	Access Security Commands
	asSetSubstitutions
	asSetFilename
	asInit
	asdbdump
	aspuag
	asphag
	asprules
	aspmem

	Channel Access Reports
	casr
	dbel
	dbcar
	ascar

	Interrupt Vectors
	veclist

	Miscellaneous
	epicsParamShow
	epicsEnvShow
	coreRelease

	Database System Test Routines
	dbtgf
	dbtpf
	dbtpn

	Record Link Reports
	dblsr
	dbLockShowLocked
	dbcar
	dbhcr

	Old Database Access Testing
	gft
	pft
	tpn

	Routines to dump database information
	dbDumpPath
	dbDumpMenu
	dbDumpRecordType
	dbDumpField
	dbDumpDevice
	dbDumpDriver
	dbDumpRecord
	dbDumpBreaktable
	dbPvdDump

	How to Add a New Breakpoint Table
	EPICS Related Software
	IOC Support Modules
	User Interface Tools
	Central Services
	Language Bindings and Interfaces to Other Tools
	C/C++
	Java
	LabView
	Matlab
	Perl
	Python
	Other

	IOC Database and Module Management Tools
	CA Server Interfaces and Applications
	Other Tools and Libraries
	(High Level) Application Packages

	How To Port EPICS to a new OS/Architecture
	PV Access repositories overview
	EPICS V4 Normative Types
	EPICS V4 Normative Types, Editors Draft, 16-Mar-2015
	Abstract
	Status of this Document
	Table of Contents
	Introduction
	Description of Normative Types
	Linguistic conventions used in this document

	Normative Type Fields
	Simple Normative Type fields - scalar and scalar array types
	scalar_t
	scalar_t[]

	Structured Normative Type fields
	enum_t
	enum_t[]
	time_t
	time_t[]
	alarm_t
	alarm_t[]
	alarmLimit_t
	alarmLimit_t[]
	display_t
	display_t[]
	control_t
	control_t[]

	Union Normative Type fields
	any
	any[]
	ntunion_t
	ntunion_t[]
	union_t
	union_t[]
	anyunion_t
	anyunion_t[]

	Normative Type Metadata
	Normative Type instance self-identification
	pvAccess binding type identification
	Example pvAccess/pvData binding
	Sender
	Receiver

	Future of type identification

	Standard optional metadata fields
	Optional descriptor field
	Optional alarm field
	Optional timeStamp field

	General Normative Types
	NTScalar
	NTScalarArray
	NTEnum
	NTMatrix
	NTURI
	Interpretation of NTURI under the “pva” scheme

	NTNameValue
	NTTable
	Interpretation
	Validation

	NTAttribute

	Specific Normative Types
	NTMultiChannel
	NTNDArray
	Image data and codec
	Data sizes
	Dimensions
	Unique ID and data timestamp
	NTNDArray attributes

	NTContinuum
	NTHistogram
	Interpretation
	Validation

	NTAggregate
	Interpretation

	Appendix A: Possible Future Additions to this Specification
	NTUnion
	NTScalarMultiChannel

	Appendix B: Normative Type Identifiers
	Bibliography

	EPICS 7, pvAccess and pvData
	Overview of pvData implementation
	PVData structure definition
	Definitions
	scalar
	scalarArray
	structure
	structureArray

	IOC Access Security
	Features
	Limitations
	Definitions

	Quick Start
	Access Security Configuration File
	Simple Example
	Syntax Definition
	Discussion

	ascheck - Check Syntax of Access Configuration File
	IOC Access Security Initialization

	Database Configuration
	Access Security Group
	Subroutine Record Support
	Record Type Description

	Example:
	Summary of Functional Requirements
	Additional Requirements
	Performance
	Generic Implementation
	No Access Security within an IOC
	Defaults
	Access Security is Optional

	pvAccess (QSRV) Specific Features

	How to Configure Channel Access
	Basic Operation, One IOC on same subnet
	Multiple IOCs on different computers, but same subnet
	IOCs on different subnets
	Multiple IOCs on the same computer
	Multiple IOCs on the same computer but on a different subnet
	Channel Access Gateway
	CA Nameserver
	UDP Broadcast Packet Relay

	Firewalls

	How to find which IOC provides a PV
	Find Host and TCP port
	Find which process is using a TCP port (Linux only)
	Find information about a process (Linux only)
	Additional: Finding the procServ/screen running an IOC (Linux only)

	How to Make Channel Access Reach Multiple Soft IOCs on a Linux Host
	UDP Name Resolution: Broadcast vs. Unicast
	Fix Using iptables
	On Debian and Derivatives
	On RedHat and Derivatives

	How to Set Up a Soft IOC Framework on Linux
	Introduction
	Why are we doing this?
	Concept

	Setting up Your Machine
	Create User Accounts and ssh Access
	Soft IOC Administrator Account
	ssh Key Pairs
	Soft IOCs

	Configure the sudo Facility
	Allow the iocadm User to Start and Stop Soft IOCs

	Setup the Start/Stop script
	Create the /etc/init.d script
	Create the Configuration File

	Distribute the Required Stuff to the Soft IOC Host
	EPICS Base
	Code and Databases

	Start Your Soft IOCs
	Start the IOCs using the startup script
	Watch them run
	Check if Starting IOCs at reboot works

	The Startup Script

	How to Set Up Console Access and Logging for VME and Soft IOCs
	Introduction
	Why are we doing this?
	Conserver
	Multiple Server Setup

	Setting up Your Machines
	Get conserver
	Configure the Conserver Servers
	Shared vs. Local Configuration
	The Local Configuration File
	Users and Groups
	Access to the Server
	Defaults for the Server
	Defaults for the Groups
	Message of the Day and Time Stamping
	Include the Local Definitions
	Defining the Soft IOC Hosts
	Defaults for Console Types
	Lists of Terminal Servers
	Lists of Console Instances

	Start the Conserver Servers
	Caveat: Memory Leak
	Configure the Conserver Clients

	Set up Web Browsing for the Log Files
	Collect the Log Files
	Setup the Web Server

	PV Save and Restore Tools available
	IOC-based Tools
	SynApps Autosave
	Host-based Tools
	XAL ‘score’
	CSS ‘PV Table’
	sddscasr

	Channel Access Protocol Specification
	License
	Document History
	Introduction
	Concepts
	Process Variables
	Virtual Circuit
	TCP Message Flow

	Channels
	Monitors
	Server Beacons
	Repeater
	Timeout Behavior
	Version compatibility
	Exceptions

	Operation
	Overall Server Operation
	Overall Client Operation
	Name Searching
	UDP search datagrams
	TCP search

	Virtual Circuits
	Inactivity timeout
	Circuit Setup
	Channel Creation
	Put Operations
	Get Operation
	Monitor Operation
	Errors

	Data Count in Gets and Monitors

	Data Types
	Messages
	Message Structure
	Header
	Payload

	Message Identifiers
	CID - Client ID
	SID - Server ID
	Subscription ID
	IOID
	Search ID

	Commands (TCP and UDP)
	CA_PROTO_VERSION
	Request
	Response

	CA_PROTO_SEARCH
	Request
	Response

	CA_PROTO_NOT_FOUND
	Response

	CA_PROTO_ECHO
	Request
	Response

	Commands (UDP)
	CA_PROTO_RSRV_IS_UP
	Response

	CA_REPEATER_CONFIRM
	Response

	CA_REPEATER_REGISTER
	Request

	Commands (TCP)
	CA_PROTO_EVENT_ADD
	Request
	Response

	CA_PROTO_EVENT_CANCEL
	Request
	Response

	CA_PROTO_READ
	Request
	Response

	CA_PROTO_WRITE
	Request

	CA_PROTO_SNAPSHOT
	CA_PROTO_BUILD
	CA_PROTO_EVENTS_OFF
	Request

	CA_PROTO_EVENTS_ON
	Request

	CA_PROTO_READ_SYNC
	Request

	CA_PROTO_ERROR
	Response

	CA_PROTO_CLEAR_CHANNEL
	Request
	Response

	CA_PROTO_READ_NOTIFY
	Request
	Response

	CA_PROTO_READ_BUILD
	Request

	CA_PROTO_CREATE_CHAN
	Request
	Response

	CA_PROTO_WRITE_NOTIFY
	Request
	Response

	CA_PROTO_CLIENT_NAME
	Request

	CA_PROTO_HOST_NAME
	Request

	CA_PROTO_ACCESS_RIGHTS
	Response

	CA_PROTO_SIGNAL
	CA_PROTO_CREATE_CH_FAIL
	Response

	CA_PROTO_SERVER_DISCONN
	Response

	Payload Data Types
	DBR_STS_* meta-data
	DBR_TIME_* meta-data
	DBR_GR_SHORT meta-data
	DBR_GR_CHAR meta-data
	DBR_GR_FLOAT meta-data
	DBR_GR_DOUBLE meta-data
	GR_ENUM and CTRL_ENUM meta-data

	Constants
	Port numbers
	Representation of constants
	Monitor Mask
	Search Reply Flag
	Access Rights

	Example message
	Repeater Operation
	Startup
	Client detection
	Operation
	Shutdown

	Searching Strategy
	ECA Error/Status Codes
	Example conversation
	Glossary of Terms
	References

	IOC Initialization
	Overview - Environments requiring a main program
	Overview - vxWorks
	Overview - RTEMS
	IOC Initialization
	Configure Main Thread
	General Purpose Modules
	Channel Access Links
	Driver Support
	Record Support
	Device Support
	Database Records
	Device Support again
	Scanning and Access Security
	Initial Processing
	Channel Access Server
	Enable Record Processing
	Enable CA Server

	Pausing an IOC
	Changing iocCore fixed limits
	callbackSetQueueSize
	dbPvdTableSize
	scanOnceSetQueueSize
	errlogInit or errlogInit2

	initHooks
	Environment Variables
	Initialize Logging

	How to Work with the EPICS Repository
	Organization of the EPICS Git Repository
	EPICS 7
	Older EPICS Versions
	Specific Releases

	Making Changes
	Maintaining Compatibility
	Testing

	Merging Your Work into EPICS Base
	Creating a Launchpad Account
	Pushing Your Work to Launchpad

	Documentation contribution guide
	For new contributors
	Contacting another developer
	Creating an issue on GitHub
	Finding the GitHub page and signing up
	Creating an issue

	Making a contribution
	Structure
	Tagging the document
	Forking the repository

	Local setup and build
	Using poetry
	Using pip
	Reference setup and build

	Edit and view your changes
	Style guide
	Making a pull request

	Adding dependencies
	Reviewing pull requests

	How to run an EPICS Collaboration Meeting
	Organization
	Communications
	Facilities
	Agenda

