

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

normativeTypesCPP

normativeTypesCPP is a C++ module containing helper classes which implement
and provide support for the EPICS V4 Normative Types.

The latter are a set of standard high-level data types to aid interoperability
of EPICS V4 applications and are specified in the
NormativeTypes Specification [http://epics-pvdata.sourceforge.net/alpha/normativeTypes/normativeTypes.html].

Status

The current release (5.0) implements fully the
16 Mar 2015 version [http://epics-pvdata.sourceforge.net/alpha/normativeTypes/normativeTypes_20150316.html]
of the Normative Types Specification.

The module status is alpha and the API and behaviour may change in future
versions.

The previous release (4.0) supported only 6 types.
There is no documentation yet for the new types added in 5.0.

Further Info

Consult the documents in the documentation directory, in particular

	normativeTypesCPP.html

	RELEASE_NOTES.md

Also see the EPICS Version 4 website [http://epics-pvdata.sourceforge.net]

Prerequisites

normativeTypesCPP requires recent versions of the following software:

	EPICS Base (v3.14.12.3 or later)

	EPICS4 pvCommonCPP (4.1.0 or later)

	pvDataCPP (5.0.0 or later)

(pvCommonCPP may not be needed depending on host/compiler.)

Building

Building uses the make utility and the EPICS base build system.

The build system needs the location of the prerequisites, e.g. by placing the
lines of the form

PVDATA = /home/install/epicsV4/pvDataCPP
PVCOMMON = /home/install/epicsV4/pvCommonCPP
EPICS_BASE = /home/install/epics/base

pointing to the locations in a file called RELEASE.local
in the configure directory or the parent directory of normativeTypesCPP.

With this in place, to build type make

make

To perform a clean build type

make clean uninstall

To run the unit tests type

make runtests

For more information on the EPICS build system consult the
Application Development guide [http://www.aps.anl.gov/epics/base/R3-14/12-docs/AppDevGuide.pdf].

Release 5.2.0

This release contains bug fixes and minor source updates needed to
build against the latest version of pvData.

Release 5.1.2

The main changes since release 5.1.1 are:

	NTUnionBuilder: Add missing value() function

	Updated document: Now document all Normative Types

Release 5.1.1

The main changes since release 5.0 are:

	Linux shared library version added

	Headers and source locations have changed

	Missing is_a implementations added

	NTAttribute::addTags() is now non-virtual

	New license file replaces LICENSE and COPYRIGHT

Shared library version added

Linux shared library version numbers have been added by setting SHRLIB_VERSION
(to 5.1 in this case). So shared object will be libnt.so.5.1 instead of
libpvData.so.

Headers and source locations have changed

Source has moved out of nt directory directly into src.

Headers have been moved into a pv directory. This facilitates using some IDEs
such as Qt Creator.

src/nt/ntscalar.cpp -> src/ntscalar.cpp
src/nt/ntscalar.h -> src/pv/ntscalar.h

Missing is_a implementations added

is_a(PVStructurePtr const &) implementation has been added for each type.

Release 5.0

This release adds support through wrapper classes and builders for the
remaining Normative Types:

	NTEnum

	NTMatrix

	NTURI

	NTAttribute

	NTContinuum

	NTHistogram

	NTAggregate

	NTUnion

	NTScalarMultiChannel

Release 5.0 therefore implements fully the
16 Mar 2015 version [http://epics-pvdata.sourceforge.net/alpha/normativeTypes/normativeTypes_20150316.html]
of the normativeTypes specification.

Each wrapper class has an extended API:

	is_a now has a convenience overload taking a PVStructure.

	isCompatible, reporting introspection type compatibility, now has an overload
taking a Structure. The PVStructure version is retained as a convenience
method and for backwards compatibility.

	An isValid function now reports validity of a compatible PVStructure’s data
with respect to the specification.

Other changes are:

	Support for NTAttributes extended as required by NTNDArray
(NTNDArrayAttributes).

	A new class for parsing NT IDs (NTID).

	Resolution of the confusion between column names and labels in NTTable and
improved API. Function for adding columns is now addColumn rather than add.
New getColumnNames function provided.

	isConnected is treated as an optional rather than a required field in
NTMultiChannelArray. isConnected() and addIsConnected() functions added to
wrapper and builder respectively.

	Unit tests for all new classes.

Release 4.0

This is the first release of normativeTypesCPP that is part of an official
EPICS V4 release.
It is a major rewrite of the previous versions of normativeTypesCPP.

This release provides support through wrapper classes and builders for the
following Normative Types:

	NTScalar

	NTScalarArray

	NTNameValue

	NTTable

	NTMultiChannel

	NTNDArray

Each type has a wrapper class of the same name which has functions for checking
compatibility of existing PVStructures (isCompatible) and the reported types of
Structures (is_a), wraps existing PVStructures (wrap, wrapUnsafe) and provides
a convenient interface to all required and optional fields.

Each type has a builder which can create a Structure, a PVStructure or a
wrapper around a new PVStructure. In each case optional or extra fields can be
added and options such as choice of scalar type can be made.

Additional features are:

	Utility classes NTField and NTPVField for standard structure fields and
NTUtils for type IDs.

	Unit tests for the implemented classes.

TODO

Documentation for recently added types.

pvAccessCPP

pvAccess is a computer communications protocol for control systems, and is a central
component of the EPICS software toolkit. pvAccessCPP is the name of the software
module which contains the C++ implementation of pvAccess.

Further Info

Consult the documents in the documentation directory, in particular

	pvAccessCPP.html

	RELEASE_NOTES.md

Also see the EPICS Version 4 website [http://epics-pvdata.sourceforge.net]

Prerequisites

The pvAccessCPP requires recent versions of the following software:

	EPICS Base (v3.14.12.3 or later)

	EPICS4 pvCommonCPP (4.1.1 or later)

	EPICS4 pvDataCPP (5.0.2 or later)

Building

Building uses the make utility and the EPICS base build system.

The build system needs the location of the prerequisites, e.g. by placing the
lines of the form

PVCOMMON = /home/install/epicsV4/pvCommonCPP
PVDATA = /home/install/epicsV4/pvDataCPP
EPICS_BASE = /home/install/epics/base

pointing to the locations in a file called RELEASE.local
in the configure directory or the parent directory of pvAccessCPP.

With this in place, to build type make

make

To perform a clean build type

make clean uninstall

To run the unit tests type

make runtests

For more information on the EPICS build system consult the
Application Development guide [http://www.aps.anl.gov/epics/base/R3-14/12-docs/AppDevGuide.pdf].

Example Usage

This section describes how you can test and demo pvAccess.

A test server is shipped with pvAccessCPP. See the file pvAccessCPP/DEMO for
examples of usage. To run the server, write a setup script like that above, and
then use it prior to executing “runTestServer”:

$./runTestServer
Starting pvAccess C++ test server...
VERSION : pvAccess Server v4.1.1
PROVIDER_NAMES : local
BEACON_ADDR_LIST :
AUTO_BEACON_ADDR_LIST : 1
BEACON_PERIOD : 15
BROADCAST_PORT : 5076
SERVER_PORT : 5075
RCV_BUFFER_SIZE : 16384
IGNORE_ADDR_LIST:
STATE : INITIALIZED

Then, another window, you can go through the demos in pvAccessCPP/DEMO. For
example:

$./bin/$EPICS_HOST_ARCH/pvget testValue
testValue 0

pvaDataCPP

pvDataCPP is a set of data types and utilities that form part of the EPICS V4 project.

Further Info

Consult the documents in the documentation directory, in particular

	pvDataCPP.html

	RELEASE_NOTES.md

Also see the EPICS Version 4 website [http://epics-pvdata.sourceforge.net]

Prerequisites

The pvDataCPP requires recent versions of the following software:

	EPICS Base (v3.14.12.3 or later)

	EPICS4 pvCommonCPP (4.1.0 or later)

(pvCommonCPP may not be needed depending on host/compiler.)

Building

Building uses the make utility and the EPICS base build system.

The build system needs the location of the prerequisites, e.g. by placing the
lines of the form

PVCOMMON = /home/install/epicsV4/pvCommonCPP
EPICS_BASE = /home/install/epics/base

pointing to the locations in a file called RELEASE.local
in the configure directory or the parent directory of pvDataCPP.

With this in place, to build type make

make

To perform a clean build type

make clean uninstall

To run the unit tests type

make runtests

For more information on the EPICS build system consult the
Application Development guide [http://www.aps.anl.gov/epics/base/R3-14/12-docs/AppDevGuide.pdf].

TODO

doxygen

There is a lot of public code that does not have doxygen tags.

valueAlarm

normativeTypes.html describes valueAlarm only for a value field that has type
double.
The implementation also supports all the numeric scalar types.

pvaDatabaseCPP

A brief description of a pvDatabase is that it is a set of network accessible, smart, memory resident records. Each record has data composed of a top level PVStructure. Each record has a name which is the channelName for pvAccess. A local Channel Provider implements the complete ChannelProvider and Channel interfaces as defined by pvAccess. The local provider provides access to the records in the pvDatabase. This local provider is accessed by the remote pvAccess server. A record is smart because code can be attached to a record, which is accessed via a method named process.
pvaDatabase is a synchronous Database interface to pvAccess,
which is callback based.
pvaDatabase is thus easier to use than pvAccess itself.

See documentation/pvaDatabaseCPP.html for details.

Building

If a proper RELEASE.local file exists one directory level above pvaDatabaseCPP
then just type:

make

It can also be built by:

cp configure/ExampleRELEASE.local configure/RELEASE.local
edit configure/RELEASE.local
make

Examples

Examples are available in exampleCPP.

Status

	The API is for EPICS Version 4 release 4.6.0

EPICS V4 release 4.6

	The examples are moved to exampleCPP

	Support for channelRPC is now available.

	removeRecord and traceRecord are now available.

The test is now a regression test the can be ran via

 make runtests

EPICS V4 release 4.5

This release is one component of EPICS V4 release 4.5.

This is the first release of pvDatabaseCPP.

It provides functionality equivalent to pvDatabaseJava.

TODO

monitorPlugin

A debate is on-going about what semantics should be.

Must test record delete.

Must test removing a record from the PVDatabase while a pvAccess client
is attached. Also why do both unlisten and detach exists?

create more regression tests

Currently only some simple tests exist. Most of the testing has been via the examples

 This repository contains two distinct pieces of software.

QSRV

A PV Access (protocol) server to be included in an EPICS IOC.

myioc_DBD += qsrv.dbd
myioc_LIBS += qsrv

For convenience an executable `softIocPVA’ is also built which is equivalent to the
‘softIoc’ executable from EPICS Base with the addition of QSRV.

p2p

A PV Access gateway (aka proxy).
The ‘p2p’ executable.

Dependencies

	epics-base [http://www.aps.anl.gov/epics/] >= 3.15.3

	pvDataCPP [http://epics-pvdata.sourceforge.net/]

	pvAccessCPP [http://epics-pvdata.sourceforge.net/]

Building

To build all dependencies from source:

git clone https://github.com/epics-base/epics-base.git
git clone https://github.com/epics-base/pvDataCPP.git
git clone https://github.com/epics-base/pvAccessCPP.git
git clone https://github.com/mdavidsaver/pva2pva.git

make -C epics-base
make -C pvDataCPP
make -C pvAccessCPP
make -C pva2pva

Running QSRV

Any IOC which includes QSRV will automatically start a PV Access server
which exposes all channels (aka. “recordname.FLD”) in the same manner
as the built-in Channel Access (protocol) server.

QSRV Group Definitions

The following .db file snippet defines a group PV “grp:name”
to have two sub-structures “A” and “B”.
Each sub-structure encodes the value and meta data one PV.
eg. “recname.VAL” is stored in “grp:name.A”
and “other.VAL” is “grp:name.B”.

record(longin, "recname") {
 info(Q:group, {
 "grp:name":{
 "A":{
 +channel:"VAL"
 }
 }
 })
}
record(longin, "other") {
 info(Q:group, {
 "grp:name":{
 "B":{
 +channel:"VAL"
 }
 }
 })
}

A full list of info(Q:group options.

record(...) {
 info(Q:group, {
 "<group_name>":{
 +id:"some/NT:1.0", // top level ID
 +meta:"FLD", // map top level alarm/timeStamp
 +atomic:true, // whether monitors default to multi-locking atomicity
 "<field.name>":{
 +type:"scalar", // controls how map VAL mapped onto <field.name>
 +channel:"VAL",
 +id:"some/NT:1.0",
 +trigger:"*", // "*" or comma seperated list of <field.name>s
 +putorder:0, // set for fields where put is allowed, processing done in increasing order
 }
 }
 })
}

Running p2p

pva2pva gateway is intended for use on a computer with at least two ethernet interfaces.
At present each pva2pva process can act as a uni-directional proxy,
presenting a pvAccess server on one interface,
and a client on other(s).

The file example.cmd provides a starting point.
Adjust EPICS_PVAS_INTF_ADDR_LIST and EPICS_PVA_ADDR_LIST
according to the host computer’s network configuration.

At present there are no safe guard against creating loops
where a gateway client side connects to its own server side.
To avoid this ensure that the address list does not contain
the interface used for the server (either directly, or included in a broadcast domain).
EPICS_PVA_AUTO_ADDR_LIST must remain set to NO.

cd pva2pva
./bin/linux-x86_64/pva2pva example.cmd

 PV Access to PV Access protocol gateway (aka. proxy)

Theory of Operation

The GW maintains a Channel Cache, which is a dictionary of client side channels
(shared_ptrepics::pvAccess::Channel instances)
in the NEVER_CONNECTED or CONNECTED states.

Each entry also has an activity flag and reference count.

The activity flag is set each time the server side receives a search request for a PV.

The reference count is incremented for each active server side channel.

Periodically the cache is iterated and any client channels with !activity and count==0 are dropped.
In addition the activity flag is unconditionally cleared.

Name search handling

The server side listens for name search requests.
When a request is received the channel cache is searched.
If no entry exists, then one is created and no further action is taken.
If an entry exists, but the client channel is not connected, then it’s activiy flag is set and no further action is taken.
If a connected entry exists, then an affirmative response is sent to the requester.

When a channel create request is received, the channel cache is checked.
If no connected entry exists, then the request is failed.

Structure associations and ownership

struct ServerContextImpl {
 vector<shared_ptr<ChannelProvider> > providers; // GWServerChannelProvider
};

struct GWServerChannelProvider : public pva::ChannelProvider {
 ChannelCache cache;
};

struct ChannelCache {
 weak_pointer<ChannelProvider> server;
 map<string, shared_ptr<ChannelCacheEntry> > entries;

 epicsMutex cacheLock; // guards entries
};

struct ChannelCacheEntry {
 ChannelCache * const cache;
 shared_ptr<Channel> channel; // InternalChannelImpl
 set<GWChannel*> interested;
};

struct InternalChannelImpl { // PVA client channel
 shared_ptr<ChannelRequester> requester; // ChannelCacheEntry::CRequester
};

struct ChannelCacheEntry::CRequester {
 weak_ptr<ChannelCacheEntry> chan;
};

struct GWChannel {
 shared_ptr<ChannelCacheEntry> entry;
 shared_ptr<ChannelRequester> requester; // pva::ServerChannelRequesterImpl
};

struct pva::ServerChannelImpl : public pva::ServerChannel
{
 shared_ptr<Channel> channel; // GWChannel
};

Threading and Locking

ServerContextImpl
BeaconServerStatusProvider ?

2x BlockingUDPTransport (bcast and mcast, one thread each)
calls ChannelProvider::channelFind with no locks held

BlockingTCPAcceptor
BlockingServerTCPTransportCodec -> BlockingAbstractCodec (send and recv threads)
ServerResponseHandler
calls ChannelProvider::channelFind
calls ChannelProvider::createChannel
calls Channel::create*

InternalClientContextImpl

2x BlockingUDPTransport (bcast listener and ucast tx/rx, one thread each)

BlockingTCPConnector
BlockingClientTCPTransportCodec -> BlockingSocketAbstractCodec (send and recv threads)
ClientResponseHandler
calls MonitorRequester::monitorEvent with MonitorStrategyQueue::m_mutex locked

TODO

ServerChannelRequesterImpl::channelStateChange() - placeholder, needs implementation

the send queue in BlockingAbstractCodec has no upper bound

Monitor

ServerChannelImpl calls GWChannel::createMonitor with a MonitorRequester which is ServerMonitorRequesterImpl

The MonitorRequester is given a Monitor which is GWMonitor

GWChannel calls InternalChannelImpl::createMonitor with a GWMonitorRequester

GWMonitorRequester is given a Monitor which is ChannelMonitorImpl

Updates originate from the client side, entering as an argument when GWMonitorRequester::monitorEvent is called,
and exiting to the server when passed as an argument of a call to ServerMonitorRequesterImpl::monitorEvent.

When an update is added to the monitor queue ServerMonitorRequesterImpl::monitorEvent is
called, as notification that the queue is not empty, which enqueues itself for transmission.
The associated TCP sender thread later calls ServerMonitorRequesterImpl::send(),
which calls GWMonitor::poll() to de-queue an event, which it encodes to the senders bytebuffer.
It then reschedules itself.

pvaClientCPP

pvaClient is a synchronous client interface to pvAccess,
which is callback based.
pvaClient is thus easier to use than pvAccess itself.

See documentation/pvaClientCPP.html for details.

Building

If a proper RELEASE.local file exists one directory level above pvaClientCPP
then just type:

make

It can also be built by:

cp configure/ExampleRELEASE.local configure/RELEASE.local
edit configure/RELEASE.local
make

pvaClientCPP Version 4.3.0

Works with pvDataCPP-7.0 and pvAccessCPP-6.0 versions

Will not work with older versions of these modules.

destroy methods removed

All the destroy methods are removed since implementation is RAII compliant.

API changes to PvaClientMonitor

The second argument of method

static PvaClientMonitorPtr create(
 PvaClientPtr const &pvaClient,
 epics::pvAccess::Channel::shared_pointer const & channel,
 epics::pvData::PVStructurePtr const &pvRequest
);

Is now changed to

static PvaClientMonitorPtr create(
 PvaClientPtr const &pvaClient,
 PvaClientChannelPtr const & pvaClientChannel,
 epics::pvData::PVStructurePtr const &pvRequest
);

A new method is also implemented

static PvaClientMonitorPtr create(
 PvaClientPtr const &pvaClient,
 std::string const & channelName,
 std::string const & providerName,
 std::string const & request,
 PvaClientChannelStateChangeRequesterPtr const & stateChangeRequester,
 PvaClientMonitorRequesterPtr const & monitorRequester
);

pvaClientCPP Version 4.2

	The examples are moved to exampleCPP.

	Support for channelRPC is now available.

	In PvaClientMultiChannel checkConnected() now throws an exception if connect fails.

pvaClientCPP Version 4.1

pvaClient is a synchronous API for pvAccess.

This is the first release of pvaClientCPP.
It provides an API that is similar to pvaClientJava.

NOT FOR DIRECT USE

This directory holds files that are used by doxygen.
The files are not meant to be read except via the doxygen documention.

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/comment-bright.png

_static/ajax-loader.gif

