

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 [image: ../_images/epics-base%2Fci-scripts.svg]Version
[image: ../_images/ci-scripts.svg]Travis status
[image: ../_images/8b578alg974axvux.svg]AppVeyor status
[image: ../_images/badge.svg]GitHub Actions status
[image: ../_images/pipeline.svg]GitLab CI/CD status

Continuous Integration for EPICS Modules

The scripts inside this repository are intended to provide a common,
easy-to-use and flexible way to add Continuous Integration to EPICS
software modules, e.g. Device or Driver Support modules.

By including this repository as a Git Submodule, you will be able to
use the same flexible, powerful CI setup that EPICS Bases uses,
including a way to specify sets of dependent modules
(with versions) that you want to compile your module against.

By using the submodule mechanism, your module will always use an
explicit commit, i.e. a fixed version of the scripts.
This ensures that any further development of the ci-scripts will
never break your existing use.

This Repository

In addition to the script that runs the builds and tests, this repository
contains service specific documentation and example configuration files
(in the subdirectories), and a small test suite that is used to verify
functionality and features of the ci-scripts module itself

The example files are your best reference. They are kept up-to-date and
show a fully-featured and a minimal setup.

You are welcome to use the test suite as a secondary reference, but keep in
mind that in your main module the path to the scripts has one level more
(e.g., ./abc here would be ./.ci/abc in your
module).
Also, the test suite does not show the same quality and documentation
levels as the example files.

Features

	Compile against different branches or releases of EPICS Base and
additional dependencies (modules like asyn, std, sequencer, etc.).

	Define setup files that declare sets of dependencies with their
versions and locations.

	Define hooks for any dependency.
Hooks are run on the dependency module before it is compiled, so
the module can be patched or further configured.

	Define shared (default) or static builds (for executables and libraries).

	Define optimized (default) or debug builds.

	Run tests (using the EPICS build system, i.e., make runtests
and friends).

Supported CI Services

The listed properties and instructions for the CI services apply to
their free tiers for open source projects, hosted in the cloud on
their infrastructure.

The companies behind these services also offer “enterprise” installations
on customer infrastructure, which will have different performance
and limitations.

Travis-CI [https://travis-ci.org/]

	Five parallel runners on Linux/Windows (one runner on MacOS)

	Ubuntu 12/14/16/18, MacOS 10.13, Windows Server v1809

	Compile natively on Linux (different versions of gcc, clang)

	Compile natively on MacOS (clang)

	Compile natively on Windows (gcc/MinGW, Visual Studio 2017)

	Cross-compile for Windows 32bit and 64bit using MinGW and WINE

	Cross-compile for RTEMS 4.9 and 4.10 (Base >= 3.15)

	Built dependencies are cached (for faster builds).

See specific
ci-scripts on Travis-CI README
for more details.

AppVeyor [https://www.appveyor.com/]

	One parallel runner (all builds are sequential)

	Windows Server 2012/2016/2019

	Compile using gcc/MinGW or different Visual Studio versions: 2008, 2010, 2012, 2013, 2015, 2017, 2019

	Compile for Windows 32bit and 64bit

	No useful caching available.

See specific
ci-scripts on AppVeyor README
for more details.

GitHub Actions [https://github.com/]

	20 parallel runners on Linux/Windows (5 runners on MacOS)

	Ubuntu 16/18/20, MacOS 10.15, Windows Server 2016/2019

	Compile natively on Linux (gcc, clang)

	Compile natively on MacOS (clang)

	Compile natively on Windows (gcc/MinGW, Visual Studio 2017 & 2019)

	Cross-compile for Windows 32bit and 64bit using MinGW and WINE

	Cross-compile for RTEMS 4.9 and 4.10 (Base >= 3.15)

	Caching not supported by ci-scripts yet.

See specific
ci-scripts on GitHub Actions README
for more details.

GitLab CI/CD [https://gitlab.com/]

	Docker-based runners on Linux (one VM instance per job)

	Can use any Docker image from Dockerhub (the examples use
ubuntu:bionic)

	Compile natively using different compilers (gcc, clang)

	Cross-compile for Windows 32bit and 64bit using MinGW and WINE

	Cross-compile for RTEMS 4.9 and 4.10 (Base >= 3.15)

	Built dependencies are cached (for faster builds).

See specific
ci-scripts on GitLab CI/CD README
for more details.

How to Use the CI-Scripts

	Get an account on a supported CI service provider platform
(e.g. Travis-CI [https://travis-ci.org/],
AppVeyor [https://www.appveyor.com/], …).
GitHub Actions does not require a separate account.

(More details in the specific README of the subdirectory.)

	In your module, add this ci-scripts repository
as a Git Submodule (name suggestion: .ci).

git submodule add https://github.com/epics-base/ci-scripts .ci

	Create setup files for different sets of dependencies you
want to compile against. (See below.)

E.g., a setup file stable.set specifying

MODULES=sncseq asyn

BASE=3.15
ASYN=R4-34
SNCSEQ=R2-2-8

will compile against the EPICS Base 3.15 branch, the Sequencer
release 2.2.8 and release 4.34 of asyn.
(Any settings can be overridden from the specific job line
in the service configuration, e.g., .travis.yml.)

	Create a configuration for the CI service by copying one of
the examples provided in the service specific subdirectory
and editing it to include the jobs you want the service to run.
Use your setup by defining e.g. SET=stable in the environment of
a job.

	Push your changes and check the CI service for your build results.

Calling the cue.py Script

Independent from CI service and platform, the runner script is called
from your main configuration as:

python .ci/cue.py <action>

where <action> is one of:

preparePrepare the build by cloning Base and the configured dependency modules,
set up the EPICS build system, then
compile Base and these modules in the order they appear in the MODULES
setting.

buildBuild your main module.

testRun the tests of your main module.

test-resultsCollect the results of your tests and print a summary.

execExecute the remainder of the line using the default command shell.

Setup Files

Your module might depend on EPICS Base and a few other support modules.
(E.g., a specific driver might need StreamDevice, ASYN and the Sequencer.)
In that case, building against every possible combination of released
versions of those dependencies is not possible:
Base (39) x StreamDevice (50) x ASYN (40) x Sequencer (52) would produce
more than 4 million different combinations, i.e. build jobs.

A more reasonable approach is to create a few setups, each being a
combination of dependency releases, that do a few scans of the available
“version space”. One for the oldest versions you want to support, one or two
for stable versions that many of your users have in production, one for the
latest released versions and one for the development branches.

A job uses a setup file if SET=<setup> (without the .set extension
of the setup file) is set for the job in the main configuration file.

Setup File Syntax

Setup files are loaded by the build script. They are found by searching
the locations in SETUP_PATH (space or colon separated list of directories,
relative to your module’s root directory).

Setup files can include other setup files by calling include <setup>
(again omitting the .set extension of the setup file). The configured
SETUP_PATH is searched for the include.

Any VAR=value setting of a variable in a setup file is only executed if
VAR is unset or empty.
That way any settings can be overridden by setting them in the job
description inside the main configuration file (e.g., .travis.yml).

Empty lines or lines starting with # are ignored.

MODULES=<list of names> should list the dependencies (software modules)
by using their well-known slugs, separated by spaces.
EPICS Base (slug: base) will always be a dependency and will be added and
compiled first. The other dependencies are added and compiled in the order
they are defined in MODULES.

Modules needed only for specific jobs (e.g., on specific architectures)
can be added from the main configuration file by setting ADD_MODULES
for the specific job(s).

REPOOWNER=<name> sets the default GitHub owner (or organization) for all
dependency modules. Useful if you want to compile against a complete set
of dependencies forked into your private GitHub area.

For any module mentioned as foo in the MODULES setting (and for BASE),
the following settings can be configured:

FOO=<version> Set version of the module that should be used. Must either
be a tag name or a branch name. [default: master]

FOO_REPONAME=<name> Set the name of the remote repository as <name>.git.
[default is the slug in lower case: foo]

FOO_REPOOWNER=<name> Set the name of the GitHub owner (or organization)
that the module repository can be found under.

FOO_REPOURL="<url>" Set the complete URL of the remote repository. Useful
for dependencies that are not hosted on GitHub.

The default URL for the repository is pointing to GitHub, under
$FOO_REPOOWNER else $REPOOWNER else epics-modules,
using $FOO_REPONAME else foo and the extension.git.

FOO_DEPTH=<number> Set the depth of the git clone operation. Use 0 for a
full clone. [default: 5]

FOO_RECURSIVE=YES/NO Set to NO (or 0) for a flat clone without
recursing into submodules. [default is including submodules: YES]

FOO_DIRNAME=<name> Set the local directory name for the checkout. This will
be always be extended by the release or branch name as <name>-<version>.
[default is the slug in lower case: foo]

FOO_HOOK=<hook> Set the name of a .patch file, a .zip or .7z archive
or a script that will be applied (using -p1), extracted or run after cloning
the module, before compiling it.
Working directory is the root of the targeted module,
e.g., .../.cache/foo-1.2). [default: no hook]

FOO_VARNAME=<name> Set the name that is used for the module when creating
the RELEASE.local files. [default is the slug in upper case: FOO]

The ci-scripts module contains default settings for widely used modules, so
that usually it is sufficient to set FOO=<version>.
You can find the list of supported (and tested) modules in defaults.set.
Feel free to suggest more default settings using a Pull Request.

Debugging

Setting VV=1 in your service configuration (e.g., .travis.yml) for a
specific job will run the job with high verbosity,
printing every command as it is being executed and switching the dependency
builds to higher verbosity.

For debugging on your local machine, you may set CACHEDIR to change the
location for the dependency builds. [default is $HOME/.cache]

Set PARALLEL_MAKE to the number of parallel make jobs that you want your
build to use. [default is the number of CPUs on the runner]

Set CLEAN_DEPS to NO if you want to leave the object file directories
(**/O.*) in the cached dependencies. [default is to run make clean
after building a dependency]

Service specific options are described in the README files
in the service specific subdirectories:

	Travis-CI README

	AppVeyor README

References: EPICS Modules Using ci-scripts

EPICS Base [https://github.com/epics-base/epics-base] and its submodules
pvData [https://github.com/epics-base/pvDataCPP],
pvAccess [https://github.com/epics-base/pvAccessCPP],
pva2pva [https://github.com/epics-base/pva2pva],
PVXS [https://github.com/mdavidsaver/pvxs]

EPICS Modules:
ASYN [https://github.com/epics-modules/asyn],
autosave [https://github.com/epics-modules/autosave],
busy [https://github.com/epics-modules/busy],
devlib2 [https://github.com/epics-modules/devlib2],
ecmc [https://github.com/epics-modules/ecmc],
gtest [https://github.com/epics-modules/gtest],
ip [https://github.com/epics-modules/ip],
lua [https://github.com/epics-modules/lua],
MCoreUtils [https://github.com/epics-modules/MCoreUtils],
modbus [https://github.com/epics-modules/modbus],
motor [https://github.com/epics-modules/motor],
mrfioc2 [https://github.com/epics-modules/mrfioc2],
OPCUA [https://github.com/ralphlange/opcua],
PCAS [https://github.com/epics-modules/pcas],
softGlueZync [https://github.com/epics-modules/softGlueZynq],
sscan [https://github.com/epics-modules/sscan],
std [https://github.com/epics-modules/std],
vac [https://github.com/epics-modules/vac],
xxx [https://github.com/epics-modules/xxx]

ESS: EtherCAT MC Motor Driver [https://github.com/EuropeanSpallationSource/m-epics-ethercatmc]

Migration Hints

Look for changes in the example configuration files, and check how they
apply to your module.

If comments in the example have changed, copy them to your configuration
to always have up-to-date documentation in your file.

2.x to 3.x Migration

Update the script and test settings in your configuration to call the
new script, following the example file.

python .ci/cue.py <action>

AppVeyor

The configuration: setting options have changed; they are now
default, static, debug and static-debug.

MinGW builds are now using the CMP: gcc compiler setting.

Adding arguments to make is supported through the EXTRA .. EXTRA5
variables. Each variable value will be passed as one argument.

Travis

The new BCFG (build configuration) variable accepts the same options as
the AppVeyor configuration: setting. Replace anySTATIC=YES settings with
BCFG=static.

Remove bash in the homebrew: section of addons:. There are no more
bash scripts.

MinGW builds (cross-builds using WINE as well as native builds on Windows)
are now using the gcc compiler setting.
Since gcc is the default, you can simply remove compiler: mingw lines.

For Windows, Travis offers native MinGW and Visual Studio 2017 compilers.
Use os: windows and set compiler: to gcc or vs2017
for those builds.

Chocolatey packages to be installed for the Windows jobs are set by adding
them to the environment variable CHOCO.

Frequently Asked Questions

How can I see what the dependency building jobs are actually doing?

Set VV=1 in the configuration line of the job you are interested in.
This will make all builds (not just for your module) verbose.

How do I update my module to use a newer minor release of ci-scripts?

Update the submodule in .ci first, then change your CI configuration
(if needed) and commit both to your module. E.g., to update your Travis
setup to release 3.2.0 of ci-scripts:

cd .ci
git pull origin v3.2.0
cd -
git add .ci
 # if needed:
 edit .travis.yml # and/or other CI service configurations
 git add .travis.yml
git commit -m "Update ci-scripts submodule to v3.2.0"

Check the example configuration files inside ci-scripts (and their
changes) to see what might be needed and/or interesting to change
in your configuration.

Depending on the changes contained in the ci-scripts update, it might
be advisable to clear the CI caches after updating ci-scripts. E.g.,
a change in setting up EPICS Base will not be applied if Base is found
in the cache.

How do I add a dependency module only for a specific job?

Add the additional dependency in the main configuration file by setting
ADD_MODULES for the specific job(s).

Why the name cue?

The noun cue is defined as “a signal (such as a word, phrase, or bit of
stage business) to a performer to begin a specific speech or action”.
(Merriam-Webster)

Release Numbering of this Module

The module tries to apply Semantic Versioning [https://semver.org/].

Major release numbers refer to the API, which is more or less defined
by the full configuration examples in the service specific
subdirectories.
If one of these files has to be changed for the existing configuration
options or important new options are being added, a new major release
is created.

Minor release numbers refer to additions and enhancements that do not
require the configuration inside an existing user module to be changed.
(Unless for using a new feature.)

Again: using the git submodule mechanism to include these scripts means
that user modules always work with a fixed, frozen version.
I.e., developments in the ci-scripts repository will never break an
existing application.
These release numbering considerations are just a hint to assess the
risks when updating the submodule.

License

This module is distributed subject to a Software License Agreement found
in file LICENSE that is included with this distribution.

AppVeyor Scripts for EPICS Modules

Features

	One parallel runner (all builds are sequential)

	Windows Server 2012/2016/2019

	Compile using gcc/MinGW or different Visual Studio versions: 2008, 2010, 2012, 2013, 2015, 2017, 2019

	Compile for Windows 32bit and 64bit

	No useful caching available.

How to Use these Scripts

	Get an account on AppVeyor [https://www.appveyor.com/], connect
it to your GitHub account and activate your support module’s
repository. For more details, please see below and refer to the
AppVeyor documentation [https://www.appveyor.com/docs/].

(This applies when using the free tier offered to open source
projects. Things will be different using an “Enterprise”
installation on customer hardware.)

	Add the ci-scripts respository as a Git Submodule
(see README one level above).

	Add settings files defining which dependencies in which versions
you want to build against
(see README one level above).

	Create an AppVeyor configuration by copying one of the examples into
the root directory of your module.

$ cp .ci/appveyor/.appveyor.yml.example-full .appveyor.yml

	Edit the .appveyor.yml configuration to include the jobs you want
AppVeyor to run.

AppVeyor automatically creates a build matrix with the following axes:

	configuration: Select shared (DLL) or static as well as optimized or debug builds. Default: shared-optimized

	platform: Select 32bit or 64bit processor architecture.

	environment: / matrix: List of environment variable settings. Each list element (starting with
a dash) is one step on the axis of the build matrix. Set CMP to select the compiler: gcc for the native
MinGW [http://mingw-w64.org/] GNU compiler, vs2008 …vs2019
(options listed above) for the Microsoft Visual Studio compilers.

Your builds will take long. AppVeyor only grants a single parallel runner VM - all jobs of the matrix
are executed sequentially. AppVeyor also does not provide a usable cache
mechanism to retain dependency artifacts across builds.
Each job will take between 6 and 15 minutes, plus testing time, every time.

The matrix: / exclude: setting can be used to reduce the number of
jobs. Check the AppVeyor docs [https://www.appveyor.com/docs/build-configuration/#build-matrix]
for more ways to reduce the build matrix size. E.g., you can opt for not creating matrix axes for configuration:
andplatform: by moving these configurations into the job lines
under environment: / matrix:.

	Push your changes and check
ci.appveyor.com [https://ci.appveyor.com/] for your build results.

GitHub / AppVeyor Integration and Authentication

Security

Enabling Two-Factor-Authentication (2FA) is always a good idea, for all
your web based services, including GitHub and AppVeyor. Get an app for your phone (Authy works fine for me, but there are plenty),
and your phone will generate one-time passwords to verify your identity
to the service if required (e.g., when logging in from a new device).

Authentication

You can use different ways and services to authenticate when you log into
your AppVeyor account. The easiest way - at least when you’re using the
service with repositories on GitHub - is to use GitHub authentication.

GitHub Integration

AppVeyor offers two ways to integrate with GitHub: through a GitHub
application or through an OAuth application. GitHub applications are using
the newer API, allow easier fine-grained access rights tuning and are
preferred.

The differences are mostly visible when you work with repositories under
organizational GitHub accounts: Using OAuth, AppVeyor always has the full
rights of your personal GitHub account.
GitHub applications on the other hand have separate instances and
configuration for every organizational account you are using on GitHub.

Enabling Builds for your Repository

On the ‘Projects’ tab of your AppVeyor web interface, create a new project.
If the repository is not listed on the project creation page,
verify the Integration settings. Most of the relevant configuration
is taken from GitHub and has to be set up there.

AppVeyor Account Sharing

You can always invite other AppVeyor users to have access to an AppVeyor
account, forming a team. Such additional shared accounts are a way to make
the AppVeyor limits (e.g., one parallel builder per account) more manageable.

Known Issues

Build Worker Images

The AppVeyor documentation on build worker images doesn’t seem to fully
describe the way things are handled internally.

The tested and suggested reproducible way of defining the build worker image
is shown in the example configuration files:

	Set the default image using the image: tag.

	Override the image for specific jobs by setting the
APPVEYOR_BUILD_WORKER_IMAGE environment variable.

GitHub Actions Scripts for EPICS Modules

Features

	20 parallel runners on Linux/Windows (5 runners on MacOS)

	Ubuntu 16/18/20, MacOS 10.15, Windows Server 2016/2019

	Compile natively on Linux (gcc, clang)

	Compile natively on MacOS (clang)

	Compile natively on Windows (gcc/MinGW, Visual Studio 2017 & 2019)

	Cross-compile for Windows 32bit and 64bit using MinGW and WINE

	Cross-compile for RTEMS 4.9 and 4.10 (Base >= 3.15)

	Caching not supported yet.

How to Use these Scripts

	Add the ci-scripts respository as a Git Submodule
(see README one level above).

	Add settings files defining which dependencies in which versions
you want to build against
(see README one level above).

	Create a GitHub Actions configuration by copying one of the workflow
examples into the directory .github/workflows of your module.

$ mkdir -p .github/workflows
$ cp .ci/github-actions/ci-scripts-build.yml.example-full .github/workflows/ci-scripts-build.yml

	Edit the workflow configuration to include the build jobs you want
GitHub Actions to run.

Build jobs are specified in the jobs: <job-name>: strategy:
declaration. The matrix: element specifies the axes as configuration
parameters with their lists of values,
env: (on the build level) controls the setting of environment variables
(which can be matrix parameters).
The runs-on: setting specifies the image (operating system) of the
runner.
The name: is what shows up in the web interface for the workflow,
builds and jobs, and the elements under steps: describe the actions
executed for each job of the matrix.

Please check the comments in the examples for more hints, and the
GitHub Actions documentation [https://help.github.com/en/actions]
for a lot more options and details.

	Push your changes and click on the Actions tab of your GitHub repository
page to see your build results.

Specifics

Quote Environment Variable Values

Variable settings distinguish between numerical and string values.
Better quote all branch and tag names. E.g.,

env:
 BASE: "7.0"

to avoid ci-scripts trying to git clone with --branch 7.

Caches

GitHub Actions provides caching of dependencies.

However, since their cache restore and create algorithm is fundamentally
different from those used by Travis and AppVeyor, this will require some
more changes in ci-scripts to work. Be patient.

GitLab CI/CD Scripts for EPICS Modules

Features

	Docker-based runners on Linux (one VM instance per job)

	Can use any Docker image from Dockerhub (the examples use
ubuntu:bionic)

	Compile natively using different compilers (gcc, clang)

	Cross-compile for Windows 32bit and 64bit using MinGW and WINE

	Cross-compile for RTEMS 4.9 and 4.10 (Base >= 3.15)

	Built dependencies are cached (for faster builds).

How to Use these Scripts

	Get an account on GitLab [https://gitlab.com/], create a project
for your support module and have it mirror your upstream GitHub
repository. For more details, please refer to the
GitLab CI/CD documentation [https://docs.gitlab.com/ee/README.html].

(This applies when using the free tier offered to open source
projects. Things will be different using an “Enterprise”
installation on customer hardware.)

	Add the ci-scripts respository as a Git Submodule
(see README one level above).

	Add settings files defining which dependencies in which versions
you want to build against
(see README one level above).

	Create a GitLab configuration by copying one of the examples into
the root directory of your module.

$ cp .ci/gitlab/.gitlab-ci.yml.example-full .gitlab-ci.yml

	Edit the .gitlab-ci.yml configuration to include the jobs you want
GitLab CI/CD to run.

Build jobs are declared in the list at the end of the file.
Each element (starting with the un-indented line) defines the
settings for one build job. extends: specifies a template to use as
a default structure, variables: controls the setting of environment
variables (overwriting settings from the template).
Also see the comments in the examples for more hints, and the
GitLab CI/CD documentation [https://docs.gitlab.com/ee/README.html]
for more options and details.

	Push your changes to GitHub, wait for the synchronization (every 5min)
and check GitLab [https://gitlab.com/] for your build results.

Caches

GitLab is configured to keep the caches separate for different jobs.

However, changing the job description (in the .gitlab-ci.yml
configuration file) or its environment settings or changing a value
inside a setup file will not invalidate the cache - you will
have to manually delete the caches through the GitLab web interface.

Caches are automatically removed after approx. four weeks.
Your jobs will have to rebuild them once in a while.

Miscellanea

To use the feature to extract .zip/.7z archives by setting
*_HOOK variables, the Linux and MacOS runners need the APT package
p7zip-full resp. the Homebrew package p7zip installed.

Travis-CI Scripts for EPICS Modules

Features

	Five parallel runners on Linux/Windows (one runner on MacOS)

	Use different compilers (gcc, clang)

	Use different gcc versions

	Cross-compile for Windows 32bit and 64bit using MinGW and WINE

	Cross-compile for RTEMS 4.9 and 4.10 (Base >= 3.15)

	Compile natively on MacOS (clang)

	Compile natively on Windows (gcc/MinGW, Visual Studio 2017)

	Built dependencies are cached (for faster builds).

How to Use these Scripts

	Get an account on Travis-CI [https://travis-ci.org/], connect
it to your GitHub account and activate your support module’s
repository. For more details, please refer to the
Travis-CI Tutorial [https://docs.travis-ci.com/user/tutorial/].
Make sure to use travis-ci.org and not their .com site.

(This applies when using the free tier offered to open source
projects. Things will be different using an “Enterprise”
installation on customer hardware.)

	Add the ci-scripts respository as a Git Submodule
(see README one level above).

	Add settings files defining which dependencies in which versions
you want to build against
(see README one level above).

	Create a Travis configuration by copying one of the examples into
the root directory of your module.

$ cp .ci/travis/.travis.yml.example-full .travis.yml

	Edit the .travis.yml configuration to include the jobs you want
Travis to run.

Build jobs are declared in the list following the jobs: include:
declaration. Each element (starting with a dash) defines the
settings for one build job. env: controls the setting of environment
variables,dist: specifies the Linux distribution,
os: the operating system.
Also see the comments in the examples for more hints, and the Travis-CI
documentation for more options and more details.

	Push your changes and check
travis-ci.org [https://travis-ci.org/] for your build results.

Caches

Travis keeps the caches separate for different jobs. As soon as the job
description (in the .travis.yml configuration file) or its environment
settings change (adding a space character is enough), the cache is different
and will be rebuilt when the job runs.

This also means that changing a value inside a setup file will not
invalidate the cache - in that case you will have to manually delete the cache
through the Travis web interface. (Or add a space character in the job
configuration.)

Caches are automatically removed after approx. four weeks.
Your jobs will have to rebuild them once in a while.

Miscellanea

To use the feature to extract .zip/.7z archives by setting
*_HOOK variables, the Linux and MacOS runners need the APT package
p7zip-full resp. the Homebrew package p7zip installed.

Installation Instructions

EPICS Base Release 3.15.x

Table of Contents

	What is EPICS base?

	What is new in this release?

	Copyright

	Supported platforms

	Supported compilers

	Software requirements

	Host system storage requirements

	Documentation

	Directory Structure

	Site-specific build configuration

	Building EPICS base

	Example application and extension

	Multiple host platforms

What is EPICS base?

The Experimental Physics and Industrial Control Systems (EPICS) is an
extensible set of software components and tools with which application
developers can create a control system. This control system can be
used to control accelerators, detectors, telescopes, or other
scientific experimental equipment. EPICS base is the set of core
software, i.e. the components of EPICS without which EPICS would not
function. EPICS base allows an arbitrary number of target systems,
IOCs (input/output controllers), and host systems, OPIs (operator
interfaces) of various types.

What is new in this release?

Please check the documentation/RELEASE_NOTES.md file for
description of changes and release migration details.

Copyright

Please review the LICENSE file included in the distribution for
legal terms of usage.

Supported platforms

The list of platforms supported by this version of EPICS base is given
in the configure/CONFIG_SITE file. If you are trying to build EPICS
Base on an unlisted host or for a different target machine you must
have the proper host/target cross compiler and header files, and you
will have to create and add the appropriate new configure files to the
base/configure/os/directory. You can start by copying existing
configuration files in the configure/os directory and then make
changes for your new platforms.

Supported compilers

This version of EPICS base has been built and tested using the host
vendor’s C and C++ compilers, as well as the GNU gcc and g++
compilers. The GNU cross-compilers work for all cross-compiled
targets. You may need the C and C++ compilers to be in your search
path to do EPICS builds; check the definitions of CC and CCC in
base/configure/os/CONFIG.<host>.<host> if you have problems.

Software requirements

GNU make

You must use the GNU version of make for EPICS builds. Set your path
so that version 3.81 or later is available (4.0 or later on Windows).

Perl

You must have Perl version 5.8.1 or later installed. The EPICS
configuration files do not specify the perl full pathname, so the perl
executable must be found through your normal search path.

Unzip and tar (Winzip on WIN32 systems)

You must have tools available to unzip and untar the EPICS base
distribution file.

Target systems

EPICS supports IOCs running on embedded platforms such as VxWorks and
RTEMS built using a cross-compiler, and also supports soft IOCs
running as processes on the host platform.

vxWorks

You must have vxWorks 5.5.x or 6.x installed if any of your target
systems are vxWorks systems; the C++ compiler for vxWorks 5.4 is now
too old to support. The vxWorks installation provides the
cross-compiler and header files needed to build for these targets. The
absolute path to and the version number of the vxWorks installation
must be set in the base/configure/os/CONFIG_SITE.Common.vxWorksCommon
file or in one of its target-specific overrides.

Consult the vxWorks 5.x [https://epics.anl.gov/base/tornado.php] or
vxWorks 6.x [https://epics.anl.gov/base/vxWorks6.php] EPICS web pages
about and the vxWorks documentation for information about configuring
your vxWorks operating system for use with EPICS.

RTEMS

For RTEMS targets, you need RTEMS core and toolset version 4.9.2 or
4.10.x. RTEMS 5 and above are only supported in EPICS 7.0.6 or later.

Command Line Editing

GNU readline and other similar libraries can be used by the IOC shell
to provide command line editing and command line history recall. The
GNU readline development package (or Apple’s emulator on macOS) must
be installed for a target when its build configuration variable
COMMANDLINE_LIBRARY is set to READLINE. The default specified in
CONFIG_COMMON is EPICS, but most linux target builds can detect if
readline is available and will then use it. RTEMS targets may be
configured to use LIBTECLA if available, and on vxWorks the OS’s
ledLib line-editing library is normally used.

Host system storage requirements

The compressed tar file is approximately 1.7 MB in size. The
distribution source tree takes up approximately 12 MB. Each host
target will need around 50 MB for build files, and each cross-compiled
target around 30 MB.

Documentation

EPICS documentation is available through the EPICS
website [https://epics.anl.gov/] at Argonne.

Release specific documentation can also be found in the
base/documentation directory of the distribution.

Directory Structure

Distribution directory structure

 base Root directory of the distribution
 base/configure Build rules and OS-independent config files
 base/configure/os OS-dependent build config files
 base/documentation Distribution documentation
 base/src Source code in various subdirectories
 base/startup Scripts for setting up path and environment

Directories created by the build

These are created in the root directory of the installation (base
above) or under the directory pointed to by the INSTALL_LOCATION
configuration variable if that has been set.

 bin Installed scripts and executables in subdirs
 cfg Installed build configuration files
 db Installed database files
 dbd Installed database definition files
 html Installed html documentation
 include Installed header files
 include/os Installed OS-specific header files in subdirs
 include/compiler Installed compiler-specific header files
 lib Installed libraries in arch subdirectories
 lib/perl Installed perl modules
 templates Installed templates

base/documentation Directory

This contains documents on how to setup, build, and install EPICS.

 README.md This file
 RELEASE_NOTES.md Notes on release changes
 KnownProblems.html List of known problems and workarounds

base/startup Directory

This contains several example scripts that show how to set up the
build environment and PATH for using EPICS. Sites would usually copy and/or modify these files as appropriate for their environment; they are not used by the build system at all.

 EpicsHostArch Shell script to set EPICS_HOST_ARCH env variable
 unix.csh C shell script to set path and env variables
 unix.sh Bourne shell script to set path and env variables
 win32.bat Bat file example to configure win32-x86 target
 windows.bat Bat file example to configure windows-x64 target

base/configure directory

This contains build-system files providing definitions and rules
required by GNU Make to build EPICS. Users should only need to modify the CONFIG_SITE files to configure the EPICS build.

 CONFIG Main entry point for building EPICS
 CONFIG.CrossCommon Cross build definitions
 CONFIG.gnuCommon Gnu compiler build definitions for all archs
 CONFIG_ADDONS Definitions for <osclass> and DEFAULT options
 CONFIG_APP_INCLUDE
 CONFIG_BASE EPICS base tool and location definitions
 CONFIG_BASE_VERSION Definitions for EPICS base version number
 CONFIG_COMMON Definitions common to all builds
 CONFIG_ENV Definitions of EPICS environment variables
 CONFIG_FILE_TYPE
 CONFIG_SITE Site specific make definitions
 CONFIG_SITE_ENV Site defaults for EPICS environment variables
 MAKEFILE Installs CONFIG* RULES* creates
 RELEASE Location of external products
 RULES Includes appropriate rules file
 RULES.Db Rules for database and database definition files
 RULES.ioc Rules for application iocBoot/ioc* directory
 RULES_ARCHS Definitions and rules for building architectures
 RULES_BUILD Build and install rules and definitions
 RULES_DIRS Definitions and rules for building subdirectories
 RULES_EXPAND
 RULES_FILE_TYPE
 RULES_TARGET
 RULES_TOP Rules specific to a <top> dir only
 Sample.Makefile Sample makefile with comments

base/configure/os Directory

Files in here provide definitions that are shared by or specific to particular host and/or target architectures. Users should only need to modify the CONFIG_SITE files in this directory to configure the EPICS build.

 CONFIG.<host>.<target> Definitions for a specific host-target combination
 CONFIG.Common.<target> Definitions for a specific target, any host
 CONFIG.<host>.Common Definitions for a specific host, any target
 CONFIG.UnixCommon.Common Definitions for Unix hosts, any target
 CONFIG.Common.UnixCommon Definitions for Unix targets, any host
 CONFIG.Common.RTEMS Definitions for all RTEMS targets, any host
 CONFIG.Common.vxWorksCommon Definitions for all vxWorks targets, any host
 CONFIG_SITE.<host>.<target> Local settings for a specific host-target combination
 CONFIG_SITE.Common.<target> Local settings for a specific target, any host
 CONFIG_SITE.<host>.Common Local settings for a specific host, any target
 CONFIG_SITE.Common.RTEMS Local settings for all RTEMS targets, any host
 CONFIG_SITE.Common.vxWorksCommon Local settings for all vxWorks targets, any host

Building EPICS base

Unpack file

Unzip and untar the distribution file. Use WinZip on Windows
systems.

Set environment variables

Files in the base/startup directory have been provided to help set
required path and other environment variables.

	EPICS_HOST_ARCH
Before you can build or use EPICS R3.15, the environment variable
EPICS_HOST_ARCH must be defined. A perl script EpicsHostArch.pl in
the base/startup directory has been provided to help set
EPICS_HOST_ARCH. You should have EPICS_HOST_ARCH set to your
host operating system followed by a dash and then your host
architecture, e.g. solaris-sparc. If you are not using the OS
vendor’s c/c++ compiler for host builds, you will need another dash
followed by the alternate compiler name (e.g. “-gnu” for GNU c/c++
compilers on a solaris host or “-mingw” for MinGW c/c++ compilers on
a WIN32 host). See configure/CONFIG_SITE for a list of supported
EPICS_HOST_ARCH values.

	PATH
As already mentioned, you must have the perl executable and you may
need C and C++ compilers in your search path. When building base you
must have echo in your search path. For Unix host builds you will
also need cp, rm, mv, and mkdir in your search path. Some Unix
systems may also need ar and ranlib, and the C/C++ compilers may
require as and ld in your path. On Solaris systems you need
uname in your path.

	LD_LIBRARY_PATH
R3.15 shared libraries and executables normally contain the full path
to any libraries they require, so setting this variable is not usually
necessary. However, if you move the EPICS installation to a new
location after building it then in order for the shared libraries to
be found at runtime it may need to be set, or some equivalent
OS-specific mechanism such as /etc/ld.so.conf on Linux must be used.
Shared libraries are now built by default on all Unix type hosts.

Site-specific build configuration

Site configuration

To configure EPICS, you may want to modify some values set in the
following files:

 configure/CONFIG_SITE Build settings. Specify target archs.
 configure/CONFIG_SITE_ENV Environment variable defaults

Host configuration

To configure each host system, you can override the default
definitions by adding a new settings file (or editing an existing
settings file) in the configure/os directory with your override
definitions. The settings file has the same name as the definitions
file to be overridden except with CONFIG in the name changed to
CONFIG_SITE.

 configure/os/CONFIG.<host>.<host> Host self-build definitions
 configure/os/CONFIG.<host>.Common Host common build definitions
 configure/os/CONFIG_SITE.<host>.<host> Host self-build overrides
 configure/os/CONFIG_SITE.<host>.Common Host common build overrides

Target configuration

To configure each target system, you may override the default
definitions by adding a new settings file (or editing an existing
settings file) in the configure/os directory with your override
definitions. The settings file has the same name as the definitions
file to be overridden except with CONFIG in the name changed to
CONFIG_SITE.

 configure/os/CONFIG.Common.<target> Target common definitions
 configure/os/CONFIG.<host>.<target> Host-target definitions
 configure/os/CONFIG_SITE.Common.<target> Target common overrides
 configure/os/CONFIG_SITE.<host>.<target> Host-target overrides

Build EPICS base

After configuring the build you should be able to build EPICS base
by issuing the following commands in the distribution’s root
directory (base):

 make distclean
 make

The command make distclean will remove all files and
directories generated by a previous build. The command make
will build and install everything for the configured host and
targets.

It is recommended that you do a make distclean at the
root directory of an EPICS directory structure before each complete
rebuild to ensure that all components will be rebuilt.

In some cases GNU Make may have been installed as gmake or
gnumake, in which case the above commands will have to be adjusted
to match.

Example application and extension

A perl tool makeBaseApp.pl and several template applications are
included in the distribution. This script instantiates the selected
template into an empty directory to provide an example application
that can be built and then executed to try out this release of base.

Instructions for building and executing the 3.15 example application
can be found in the section “Example Application” of Chapter 2,
“Getting Started”, in the “IOC Application Developer’s Guide” for this
release. The “Example IOC Application” section briefly explains how to
create and build an example application in a user created <top>
directory. It also explains how to run the example application on a
vxWorks ioc or as a process on the host system. By running the example
application as a host-based IOC, you will be able to quickly implement
a complete EPICS system and be able to run channel access clients on
the host system.

Another perl script makeBaseExt.pl is also included in the
distribution file for creating an extensions tree and sample
application that can also be built and executed. Both these scripts
are installed into the install location bin/<hostarch> directory
during the base build.

Multiple host platforms

You can build using a single EPICS directory structure on multiple
host systems and for multiple cross target systems. The intermediate
and binary files generated by the build will be created in separate
subdirectories and installed into the appropriate separate host/target
install directories.

EPICS executables and perl scripts are installed into the
$(INSTALL_LOCATION)/bin/<arch> directories. Libraries are installed
into $(INSTALL_LOCATION)/lib/<arch>. The default definition for
$(INSTALL_LOCATION) is $(TOP) which is the root directory in the
distribution directory structure, base. Intermediate object files
are stored in O.<arch> source subdirectories during the build
process, to allow objects for multiple cross target architectures
to be maintained at the same time.

To build EPICS base for a specific
host/target combination you must have the proper host/target C/C++
cross compiler and target header files and the base/configure/os
directory must have the appropriate configure files.

EPICS Base Release 3.15.9

This version of EPICS Base has not been released yet.

Changes made on the 3.15 branch since 3.15.9

Support for Apple M1/M2 (arm64) Processors

Thanks to Jeong Han Lee this release comes with build support for Apple’s new
M1 CPUs running macOS, using the target name darwin-aarch64.

Set thread names on Windows

On MS Windows, epicsThread names are made available to the OS and debugger
using SetThreadDescription() if available as well as using the older
exception mechanism.

Fix timers on MS Windows for non-EPICS threads

The waitable timer changes in 3.15.9 broke calls to epicsThreadSleep() and
similar routines that used timers (including ca_pend_event()) when made from
threads that were not started using the epicsThread APIs.
This problem [https://github.com/epics-base/epics-base/pull/200]
has now been fixed [https://github.com/epics-base/epics-base/pull/201].

Changes made between 3.15.8 and 3.15.9

Use waitable timers on Microsoft Windows

The epicsEventWaitWithTimeout() and epicsThreadSleep() functions have
been changed to use waitable timers. On Windows 10 version 1803 or higher
they will use high resolution timers for more consistent timing.

See this Google Groups thread [https://groups.google.com/a/chromium.org/g/scheduler-dev/c/0GlSPYreJeY]
for a comparison of the performance of different timers.

Build target for documentation

The build target inc now works again after a very long hiatus. It now
generates and installs just the dbd, header and html files, without compiling
any C/C++ code. This can be used to speed up CI jobs that only generate
documentation.

Bug fixes

	The error status returned by a record support’s special() method is now propagated out of the dbPut() routine again (broken since 3.15.0).

	gh: #80 [https://github.com/epics-base/epics-base/issues/80], VS-2015 and
later have working strtod()

	lp: #1776141 [https://bugs.launchpad.net/epics-base/+bug/1776141], Catch
buffer overflow from long link strings

	lp: #1899697 [https://bugs.launchpad.net/epics-base/+bug/1899697], Records
in wrong PHAS order

Change to the junitfiles self-test build target

The names of the generated junit xml test output files have been changed
from <testname>.xml to <testname>-results.xml, to allow better
distinction from other xml files. (I.e., for easy wildcard matching.)

Fixes and code cleanups

Issues reported by various static code checkers.

Changes made between 3.15.7 and 3.15.8

Bug fixes

The following launchpad bugs have fixes included in this release:

	lp: 1812084 [https://bugs.launchpad.net/epics-base/+bug/1812084], Build
failure on RTEMS 4.10.2

	lp: 1829770 [https://bugs.launchpad.net/epics-base/+bug/1829770], event
record device support broken with constant INP

	lp: 1829919 [https://bugs.launchpad.net/epics-base/+bug/1829919], IOC
segfaults when calling dbLoadRecords after iocInit

	lp: 1838792 [https://bugs.launchpad.net/epics-base/+bug/1838792], epicsCalc
bit-wise operators on aarch64

	lp: 1841608 [https://bugs.launchpad.net/epics-base/+bug/1841608], logClient
falsely sends error logs on all connections

	lp: 1853168 [https://bugs.launchpad.net/epics-base/+bug/1853168], undefined
reference to clock_gettime()

	lp: 1862328 [https://bugs.launchpad.net/epics-base/+bug/1862328], Race
condition on IOC start leaves rsrv unresponsive

	lp: 1868486 [https://bugs.launchpad.net/epics-base/+bug/1868486],
epicsMessageQueue lost messages

Improvements to the self-test build targets

This release contains changes that make it possible to integrate another test
running and reporting system (such as Google’s gtest) into the EPICS build
system. The built-in test-runner and reporting system will continue to be used
by the test programs inside Base however.

These GNUmake tapfiles and test-results build targets now collect a list of
the directories that experienced test failures and display those at the end of
running and/or reporting all of the tests. The GNUmake process will also only
exit with an error status after running and/or reporting all of the test
results; previously the -k flag to make was needed and even that didn’t always
work.

Continuous Integration systems are recommended to run make tapfiles (or if
they can read junittest output instead of TAP make junitfiles) followed by
make -s test-results to display the results of the tests. If multiple CPUs are
available the -j flag can be used to run tests in parallel, giving the maximum
jobs that should be allowed so make -j4 tapfiles for a system with 4 CPUs say.
Running many more jobs than you have CPUs is likely to be slower and is not
recommended.

Calc Engine Fixes and Enhancements

The code that implements bit operations for Calc expressions has been reworked
to better handle some CPU architectures and compilers. As part of this work a
new operator has been added: >>> performs a logical right-shift, inserting
zero bits into the most significant bits (the operator >> is an arithmetic
right-shift which copies the sign bit as it shifts the value rightwards).

IOC logClient Changes

The IOC’s error logging system has been updated significantly to fix a number
of issues including:

	Only send errlog messages to iocLogClient listeners

	Try to minimize lost messages while the log server is down:

	Detect disconnects sooner

	Don’t discard the buffer on disconnect

	Flush the buffer immediately after a server reconnects

epicsThread: Main thread defaults to allow blocking I/O

VxWorks IOCs (and potentially RTEMS IOCs running GeSys) have had problems with
garbled error messages from dbStaticLib routines for some time — messages
printed before iocInit were being queued through the errlog thread instead of
being output immediately. This has been fixed by initializing the main thread
with its OkToBlock flag set instead of cleared. IOCs running on other
operating systems that use iocsh to execute the startup script previously had
that set anyway in iocsh so were not affected, but this change might cause other
programs that don’t use iocsh to change their behavior slightly if they use
errlogPrintf(), epicsPrintf() or errPrintf().

catools: Handle data type changes in camonitor

The camonitor program didn’t properly cope if subscribed to a channel whose data
type changed when its IOC was rebooted without restarting the camonitor program.
This has now been fixed.

More Record Reference Documentation

The remaining record types have had their reference pages moved from the Wiki,
and some new reference pages have been written to cover the analog array and
long string input and output record types plus the printf record type, none of
which were previously documented. The wiki reference pages covering the fields
common to all, input, and output record types have also been added, thanks to
Rolf Keitel. The POD conversion scripts have also been improved and they now
properly support linking to subsections in a different document, although the
POD changes to add the cross-links that appeared in the original wiki pages
still needs to be done in most cases.

Fix build issues with newer MinGW versions

The clock_gettime() routine is no longer used under MinGW since newer versions
don’t provide it any more.

Fix race for port in RSRV when multiple IOCs start simultaneously

If multiple IOCs were started at the same time, by systemd say, they could race
to obtain the Channel Access TCP port number 5064. This issue has been fixed.

Changes made between 3.15.6 and 3.15.7

GNU Readline detection on Linux

Most Linux architectures should now configure themselves automatically to use
the GNU Readline library if its main header file can be found in the expected
place, and not try to use Readline if the header file isn’t present. For older
Linux architectures where libncurses or libcurses must also be linked with, the
manual configuration of the COMMANDLINE_LIBRARY variable in the appropriate
configure/os/CONFIG_SITE.Common.<arch> file will still be necessary.

Replace EPICS_TIMEZONE with EPICS_TZ

The EPICS_TIMEZONE environment parameter provided time-zone information for
the IOC’s locale in the old ANSI format expected by VxWorks for its TIMEZONE
environment variable, and can also used by RTEMS to set its TZ environment
variable. However the TIMEZONE value has to be updated every year since it
contains the exact dates of the daylight-savings time changes. The Posix TZ
format that RTEMS uses contains rules that for calculating those dates, thus its
value would only need updating if the rules (or the locale) are changed.

This release contains changes that replace the EPICS_TIMEZONE environment
parameter with one called EPICS_TZ and a routine for VxWorks that calculates
the TIMEZONE environment variable from the current TZ value. This routine
will be run once at start-up, when the EPICS clock has synchronized to its NTP
server. The calculations it contains were worked out and donated to EPICS by
Larry Hoff in 2009; it is unforunate that it has taken 10 years for them to be
integrated into Base.

The default value for the EPICS_TZ environment parameter is set in the Base
configure/CONFIG_SITE_ENV file, which contains example settings for most EPICS
sites that use VxWorks, and a link to a page describing the Posix TZ format for
any locations that I missed.

If a VxWorks IOC runs continuously without being rebooted from December 31st to
the start of daylight savings time the following year, its TIMEZONE value will
be wrong as it was calculated for the previous year. This only affects times
that are converted to a string on the IOC however and is easily fixed; just run
the command tz2timezone() on the VxWorks shell and the calculation will be
redone for the current year. IOCs that get rebooted at least once before the
start of summer time will not need this to be done.

Added new decimation channel filter

A new server-side filter has been added to the IOC for reducing the number
and frequency of monitor updates from a channel by a client-specified factor.
The filter’s behaviour is quite simplistic, it passes the first monitor event it
sees to the client and then drops the next N-1 events before passing another
event. For example to sample a 60Hz channel at 1Hz, a 10Hz channel every 6
seconds, or a 1Hz channel once every minute:

 Hal$ camonitor 'test:channel.{"dec":{"n":60}}'
 ...

More information is included in the filters documentation, which can be found
here or here depending on where you’re
reading this document from.

Imported Record Reference Documentation from Wiki

The remaining record types that had 3.14 reference documentation in the EPICS
Wiki have had that documentation converted and imported into their DBD files.
The preferred form for future updates to the record type descriptions is now an
emailed patch file, a Pull Request through GitHub, or a Merge Request through
Launchpad. Note that in some cases the behavior of a record type in a 7.0.x
release may differ from that of the same record type in a 3.15 release, although
this would be unusual, so it may be important to indicate the branch that your
changes apply to.

NOTE: These documentation changes may have modified the order of the fields
in some record definitions, in which case this release will not be compatible
with record or device support binaries that were compiled against an earlier
release.

make test-results for Windows

The make target test-results should now work properly on Windows. Some Perl
installations used versions of prove.bat that would only display the results of
up to 3 tests or didn’t return an error status in the event of tests failing. The
build system now calls its own perl script to summarize the results instead of
passing a list of TAP filenames to prove.

Add option to avoid CALLBACK conflict

If a macro EPICS_NO_CALLBACK is defined, then callback.h will no longer
(re)define CALLBACK. The name ‘CALLBACK’ is used by the WIN32 API, and
redefinition in callback.h cause errors if some windows headers are later
included.

Code which defines EPICS_NO_CALLBACK, but still wishes to use callbacks,
should use the alternate name epicsCallback introduced in 3.15.6, 3.16.2, and
7.0.2. It is also possible, though not encouraged, to use struct callbackPvt
which has been present since the callback API was introduced.

Cleaning up with Multiple CA contexts in a Process

Bruno Martins reported a problem with the CA client library at shutdown in a
process that uses multiple CA client contexts. The first context that triggers
the CA client exit handler prevents any others from being able to clean up
because it resets the ID of an internal epicsThreadPrivate variable which is
shared by all clients. This action has been removed from the client library,
which makes cleanup of clients like this possible.

Perl CA bindings fixed for macOS Mojave

Apple removed some Perl header files from macOS Mojave that were available
in their SDK, requiring a change to the include paths used when compiling the
CA bindings. The new version should build on new and older macOS versions, and
these changes may also help other targets that have an incomplete installation
of Perl (the build will continue after printing a warning that the Perl CA
bindings could not be built).

Routine epicsTempName() removed from libCom

This routine was a simple wrapper around the C89 function tmpnam()
which is now seen as unsafe and causes warning messages to be generated by
most modern compilers. The two internal uses of this function have been
modified to call epicsTempFile() instead. We were unable to find any
published code that used this function, so it was removed immediately instead
of being deprecated.

DBD Parsing of Record Types

The Perl DBD file parser has been made slightly more liberal; the order in
which DBD files must be parsed is now more flexible, so that a record type
definition can now be parsed after a device support that referred to that
record type. A warning message will be displayed when the device support is
seen, but the subsequent loading of the record type will be accepted without
triggering an error. See
Launchpad bug 1801145 [https://bugs.launchpad.net/epics-base/+bug/1801145].

menuScan and several record types documented with POD

The EPICS Wiki pages describing a number of standard record types has been
converted into the Perl POD documentation format and added to the DBD files,
so at build-time an HTML version of these documents is generated and installed
into the htmls directory. Thanks to Tony Pietryla.

CA client tools learned -V option

This displays the version numbers of EPICS Base and the CA protocol.

Changes made between 3.15.5 and 3.15.6

Unsetting environment variables

The new command epicsEnvUnset varname can be used to
unset an environment variable.

Warning indicators in msi (and macLib) output

The libCom macro expansion library has been modified so that when the
SUPPRESS_WARNINGS flag is set it will no longer include any ,undefined
or ,recursive indicators in its output when undefined or recursive
macros are encountered. These indicators were harmless when the output was fed
into an IOC along with a definition for the macro, but when the msi
tool was used to generate other kinds of files they caused problems. If the
msi -V flag is used the markers will still be present in the output
whenever the appropriate condition is seen.

Improvements to msi

In addition to fixing its response to discovering parsing errors in its
substitution input file (reported as Launchpad
bug 1503661 [https://bugs.launchpad.net/epics-base/+bug/1503661])
so it now deletes the incomplete output file, the msi program has been cleaned
up a little bit internally.

All array records now post monitors on their array-length fields

The waveform record has been posting monitors on its NORD field since Base
3.15.0.1; we finally got around to doing the equivalent in all the other
built-in record types, which even required modifying device support in some
cases. This fixes
Launchpad bug 1730727 [https://bugs.launchpad.net/epics-base/+bug/1730727].

HOWTO: Converting Wiki Record Reference to POD

Some documentation has been added to the dbdToHtml.pl script
explaining how Perl POD (Plain Old Documentation) markup can be added to
.dbd files to generate HTML documentation for the record types. To see
these instructions, run perl bin/<host>/dbdToHtml.pl -H
or perldoc bin/<host>/dbdToHtml.pl.

Fix problem with numeric soft events

Changing from numeric to named soft events introduced an incompatibility
when a numeric event 1-255 is converted from a DOUBLE, e.g. from a calc record.
The post_event() API is not marked deprecated any more.

Also scanpel has been modified to accept a glob pattern for
event name filtering and to show events with no connected records as well.

Add osiSockOptMcastLoop_t and osiSockTest

Added a new OS-independent typedef for multicast socket options, and a test
file to check their correct operation.

Support for CONFIG_SITE.local in Base

This feature is mostly meant for use by developers; configuration
settings that would normally appear in base/configure/CONFIG_SITE can now
be put in a locally created base/configure/CONFIG_SITE.local file instead
of having go modify or replace the original. A new .gitignore pattern
tells git to ignore all configure/*.local files.

Fix broken EPICS_IOC_LOG_FILE_LIMIT=0 setting

The Application Developers’ Guide says this is allowed and disables the
limit on the log-file, but it hasn’t actually worked for some time (if ever).
Note that the iocLogServer will be removed from newer Base release sometime
soon as its functionality can be implemented by other dedicated log servers
such as logstash or syslog-ng.

Fixes lp:1786858 [https://bugs.launchpad.net/bugs/1786858]
and part of lp:1786966 [https://bugs.launchpad.net/bugs/1786966].

Cleanup of startup directory

The files in the startup directory have not been maintained in recent years
and have grown crufty (technical term). This release includes the following
updates to these files:

	The Perl EpicsHostArch.pl script has been rewritten, and support
for a few previously missing host architectures has been added to it.

	The EpicsHostArch.pl script has also been moved into the standard
src/tools directory, from where it will be installed into
lib/perl. In this new location it is no longer executable, so it must
be run by the perl executable.

	The build system has been adjusted to look for EpicsHostArch.pl in
both places if the EPICS_HOST_ARCH environment variable has not been
set at build-time.

	Sites that used the original Perl script to set EPICS_HOST_ARCH as part of
their standard environment will need to adjust their scripts when they
upgrade to this release.

	The EpicsHostArch shell script has been replaced with a wrapper
routine that calls the Perl EpicsHostArch.pl script. Sites that rely on
this script to set EPICS_HOST_ARCH should consider switching to the
Perl script instead.

	The Site.cshrc and Site.profile files have been renamed to
unix.csh and unix.sh, respectively.

	The existing win32.bat file has been cleaned up and a new
windows.bat file added for 64-bit targets. The contents of these files
should be seen as examples, don’t uncomment or install parts for software
that you don’t explicitly know that you need.

Recent Apple XCode Build Issues

The latest version of XCode will not compile calls to system() or
clock_settime() for iOS targets. There were several places in Base
where these were being compiled, although there were probably never called. The
code has now been modified to permit iOS builds to complete again.

Prevent illegal alarm severities

A check has been added to recGblResetAlarms() that prevents records
from getting an alarm severity higher than INVALID_ALARM. It is still possible
for a field like HSV to get set to a value that is not a legal alarm severity,
but the core IOC code should never copy such a value into a record’s SEVR or
ACKS fields. With this fix the record’s alarm severity will be limited to
INVALID_ALARM.

Fixes for Launchpad bugs

The following launchpad bugs have fixes included:

	lp: 1786320 [https://bugs.launchpad.net/epics-base/+bug/1786320], dbCa
subscribes twice to ENUM

	lp: 541221 [https://bugs.launchpad.net/epics-base/+bug/541221],
assert (pca->pgetNative) failed in ../dbCa.c

	lp: 1747091 [https://bugs.launchpad.net/epics-base/+bug/1747091],
epicsTimeGetEvent() / generalTime bug

	lp: 1743076 [https://bugs.launchpad.net/epics-base/+bug/1743076], Segfault
in ca_attach_context() during exits

	lp: 1751380 [https://bugs.launchpad.net/epics-base/+bug/1751380], Deadlock
in ca_clear_subscription()

	lp: 1597809 [https://bugs.launchpad.net/epics-base/+bug/1597809], Setting
NAME field in DB file may break IOC

	lp: 1770292 [https://bugs.launchpad.net/epics-base/+bug/1770292],
get_alarm_double() inconsistent across record types

	lp: 1771298 [https://bugs.launchpad.net/epics-base/+bug/1771298],
Conversion of NaN to integer relies on undefined behavior

Updated VxWorks Timezone settings

Removed the settings for 2017; fixed the hour of the change for MET.

Fixed camonitor server side relative timestamps bug

Initialize the first time-stamp from the first monitor, not the client-side
current time in this configuration.

Build changes for MSVC

Windows builds using Visual Studio 2015 and later now use the -FS
compiler option to allow parallel builds to work properly.

We now give the -FC option to tell the compiler to print absolute
paths for source files in diagnostic messages.

Extend maximum Posix epicsEventWaitWithTimeout() delay

The Posix implementation of epicsEventWaitWithTimeout() was limiting the
timeout delay to at most 60 minutes (3600.0 seconds). This has been changed to
10 years; significantly longer maximum delays cause problems on systems where
time_t is still a signed 32-bit integer so cannot represent absolute
time-stamps after 2038-01-19. Our assumption is that such 32-bit systems will
have been retired before the year 2028, but some additional tests have been
added to the epicsTimeTest program to detect and fail if this assumption is
violated.

New test-related make targets

This release adds several new make targets intended for use by developers
and Continuous Integration systems which simplify the task of running the
built-in self-test programs and viewing the results. Since these targets are
intended for limited use they can have requirements for the build host which
go beyond the standard minimum set needed to build and run Base.

test-results - Summarize test results

The new make target test-results will run the self-tests if
necessary to generate a TAP file for each test, then summarizes the TAP output
files in each test directory in turn, displaying the details of any failures.
This step uses the program prove which comes with Perl, but also needs
cat to be provided in the default search path so will not work on most
Windows systems.

junitfiles - Convert test results to JUnit XML Format

The new make target junitfiles will run the self-tests if necessary
and then convert the TAP output files into the more commonly-supported JUnit
XML format. The program that performs this conversion needs the Perl module
XML::Generator to have been installed.

clean-tests - Delete test result files

The new make target clean-tests removes any test result files from
previous test runs. It cleans both TAP and JUnit XML files.

Fix DNS related crash on exit

The attempt to fix DNS related delays for short lived CLI programs (eg. caget)
in lp:1527636 introduced a bug which cased these short lived clients to crash on
exit. This bug should now be fixed.

Server bind issue on Windows

When a National Instruments network variables CA server is already running on
a Windows system and an IOC or PCAS server is started, the IOC’s attempt to
bind a TCP socket to the CA server port number fails, but Windows returns a
different error status value than the IOC is expecting in that circumstance
(because the National Instruments code requests exclusive use of that port,
unlike the EPICS code) so the IOC fails to start properly. The relevent EPICS
bind() checks have now been updated so the IOC will request that a dynamic port
number be allocated for this TCP socket instead when this happens.

Checking Periodic Scan Rates

Code has been added to the IOC startup to better protect it against bad
periodic scan rates, including against locales where . is not
accepted as a decimal separator character. If the scan period in a menuScan
choice string cannot be parsed, the associated periodic scan thread will no
longer be started by the IOC and a warning message will be displayed at iocInit
time. The scanppl command will also flag the faulty menuScan value.

Changes made between 3.15.4 and 3.15.5

dbStatic Library Speedup and Cleanup

Loading of database files has been optimized to avoid over-proportionally
long loading times for large databases. As a part of this, the alphabetical
ordering of records instances (within a record type) has been dropped. In the
unexpected case that applications were relying on the alphabetic order, setting
dbRecordsAbcSorted = 1 before loading the databases will retain the
old behavior.

The routine dbRenameRecord() has been removed, as it was intended
to be used by database configuration tools linked against a host side version
of the dbStatic library that is not being built anymore.

Launchpad Bug-fixes

In addition to the more detailed change descriptions below, the following
Launchpad bugs have also been fixed in this release:

	lp:1440186 [https://bugs.launchpad.net/epics-base/+bug/1440186] Crash due
to a too small buffer being provided in dbContextReadNotifyCache

	lp:1479316 [https://bugs.launchpad.net/epics-base/+bug/1479316] Some data
races found using Helgrind

	lp:1495833 [https://bugs.launchpad.net/epics-base/+bug/1495833] biRecord
prompt groups are nonsensical

	lp:1606848 [https://bugs.launchpad.net/epics-base/+bug/1606848] WSAIoctl
SIO_GET_INTERFACE_LIST failed in Windows

Whole-Program Optimization for MS Visual Studio Targets

When using the Microsoft compilers a new build system variable is provided
that controls whether whole program optimization is used or not. For static
builds using Visual Studio 2010 this optimization must be disabled. This is
controlled in the files configure/os/CONFIG_SITE.Common.windows-x64-static and
configure/os/CONFIG_SITE.Common.win32-x86-static by setting the variable
OPT_WHOLE_PROGRAM = NO to override the default value
YES that would otherwise be used.

Note that enabling this optimization slows down the build process. It is not
possible to selectively disable this optimization, when building a particular
module say; Microsoft’s linker will restart itself automatically with the
-LTCG flag set and display a warning if it is asked to link any object
files that were compiled with the -GL flag.

Add dynamic (variable length) array support to PCAS

Dynamic array sizing support was added to the IOC server (RSRV) in the
Base-3.14.12 release, but has not until now been supported in the “Portable
Channel Access Server” (PCAS). Channel Access server applications using the
PCAS may not need to be modified at all; if they already push monitors with
different gdd array lengths, those variable sizes will be forwarded to any CA
clients who have requested variable length updates. The example CAS server
application has been modified to demonstrate this feature.

In implementing the above, the gdd method gdd::put(const gdd *) now
copies the full-sized array from the source gdd if the destination gdd is of
type array, has no allocated memory and a boundary size of 0.

Additional epicsTime conversion

The EPICS timestamp library (epicsTime) inside libCom’s OSI layer has
been extended by routines that convert from struct tm to the EPICS
internal epicsTime type, assuming UTC - i.e. without going through
the timezone mechanism. This solves issues with converting from the structured
type to the EPICS timestamp at driver level from multiple threads at a high
repetition rate, where the timezone mechanism was blocking on file access.

MinGW Cross-builds from Linux

The build configuration files that allow cross-building of the 32-bit
win32-x86-mingw cross-target have been adjusted to default to building shared
libraries (DLLs) as this is now supported by recent MinGW compilers. The 64-bit
windows-x64-mingw cross-target was already being built that way by default. The
configuration options to tell the minGW cross-compiler to link programs with
static versions of the compiler support libraries have now been moved into the
CONFIG_SITE.linux-x86.<target> files.

General Time updates

The iocInit code now performs a sanity check of the current time
returned by the generalTime subsystem and will print a warning if the wall-clock
time returned has not been initialized yet. This is just a warning message; when
a time provider does synchonize the IOC will subsequently pick up and use the
correct time. This check code also primes the registered event system provider
if there is one so the epicsTimeGetEventInt() routine will work on IOCs
that ask for event time within an interrupt service routine.

The osiClockTime provider’s synchronization thread (which is only used on
some embedded targets) will now poll the other time providers at 1Hz until the
first time it manages to get a successful timestamp, after which it will poll
for updates every 60 seconds as before.

The routine generalTimeGetExceptPriority() was designed for use by
backup (lower priority) time providers like the osiClockTime provider which do
not have their own absolute time reference and rely on other providers for an
absolute time source. This routine no longer implements the ratchet mechanism
that prevented the time it returned from going backwards. If the backup clock’s
tick-timer runs fast the synchronization of the backup time provider would never
allow it to be corrected backwards when the ratchet was in place. The regular
epicsTimeGetCurrent() API still uses the ratchet mechanism, so this
change will not cause the IOC to see time going backwards.

Microsoft Visual Studio builds

The build configuration files for builds using the Microsoft compilers have been
updated, although there should be no noticable difference at most sites. One
extra compiler warning is now being suppressed for C++ code, C4344: behavior change: use of explicit template arguments results in ... which is gratuitous
and was appearing frequently in builds of the EPICS V4 modules.

Cross-builds of the windows-x64 target from a win32-x86 host have been
removed as they don’t actually work within the context of a single make
run. Significant changes to the build configuration files would be necessary for
these kinds of cross-builds to work properly, which could be done if someone
needs them (email Andrew Johnson before working on this, and see
this stack-overflow answer [http://stackoverflow.com/questions/5807647/how-do-you-compile-32-bit-and-64-bit-applications-at-the-same-time-in-visual-stu] for a starting point).

Bazaar keywords such as ‘Revision-Id’ removed

In preparation for moving to git in place of the Bazaar revision control
system we have removed all the keywords from the Base source code.

Linux systemd service file for CA Repeater

Building this version of Base on a Linux system creates a systemd service
file suitable for starting the Channel Access Repeater under systemd. The file
will be installed into the target bin directory, from where it can be copied
into the appropriate systemd location and modified as necessary. Installation
instructions are included as comments in the file.

Changes made between 3.15.3 and 3.15.4

New string input device support “getenv”

A new “getenv” device support for both the stringin and lsi (long string
input) record types can be used to read the value of an environment variable
from the IOC at runtime. See base/db/softIocExit.db for sample usage.

Build rules and DELAY_INSTALL_LIBS

A new order-only prerequisite build rule has been added to ensure that
library files (and DLL stubs on Windows) get installed before linking any
executables, which resolves parallel build problems on high-powered CPUs. There
are some (rare) cases though where a Makefile has to build an executable and run
it to be able to compile code for a library built by the same Makefile. With
this new build rule GNUmake will complain about a circular dependency and the
build will probably fail in those cases. To avoid this problem the failing
Makefile should set DELAY_INSTALL_LIBS = YES before including the
$(TOP)/configure/RULES file, disabling the new build rule.

IOC environment variables and build parameters

The IOC now sets a number of environment variables at startup that provide the
version of EPICS Base it was built against (EPICS_VERSION_...) and its build
architecture (ARCH). In some cases this allows a single iocBoot/ioc directory to
be used to run the same IOC on several different architectures without any
changes.

There are also 3 new environment parameters (EPICS_BUILD_...) available that
C/C++ code can use to find out the target architecture, OS class and compiler
class it was built with. These may be useful when writing interfaces to other
languages.

New implementation of promptgroup/gui_group field property

The mechanism behind the promptgroup() field property inside a record type
definition has been changed. Instead of using a fixed set of choices,
the static database access library now collects the used gui group names
while parsing DBD information. Group names should start with a two-digit number
plus space-dash-space to allow proper sorting of groups.

The include file guigroup.h that defined the fixed set of choices
has been deprecated. Instead, use the conversion functions between index number
and group string that have been added to dbStaticLib.

When a DBD file containing record-type descriptions is expanded, any
old-style GUI_xxx group names will be replaced by a new-style
string for use by the IOC. This permits an older record type to be used with
the 3.15.4 release, although eventually record types should be converted by
hand with better group names used.

CA server configuration changes

RSRV now honors EPICS_CAS_INTF_ADDR_LIST and binds only to the provided list
of network interfaces. Name searches (UDP and TCP) on other network interfaces
are ignored. For example on a computer with interfaces 10.5.1.1/24, 10.5.2.1/24,
and 10.5.3.1/24, setting EPICS_CAS_INTF_ADDR_LIST='10.5.1.1 10.5.2.1' will
accept traffic on the .1.1 and .2.1, but ignore from .3.1

RSRV now honors EPICS_CAS_IGNORE_ADDR_LIST and ignores UDP messages received
from addresses in this list.

Previously, CA servers (RSRV and PCAS) would build the beacon address list using
EPICS_CA_ADDR_LIST if EPICS_CAS_BEACON_ADDR_LIST was no set. This is no
longer done. Sites depending on this should set both environment variables to
the same value.

IPv4 multicast for name search and beacons

libca, RSRV, and PCAS may now use IPv4 multicasting for UDP traffic (name
search and beacons). This is disabled by default. To enable multicast address(s)
must be listed in EPICS_CA_ADDR_LIST for clients and EPICS_CAS_INTF_ADDR_LIST
for servers (IOCs should set both). For example:
EPICS_CAS_INTF_ADDR_LIST='224.0.2.9' EPICS_CA_ADDR_LIST=224.0.2.9

Please note that no IPv4 multicast address is officially assigned for Channel
Access by IANA. The example 224.0.2.9 is taken from the AD-HOC Block I range.

Moved mlockall() into its own epicsThread routine

Since EPICS Base 3.15.0.2 on Posix OSs the initialization of the epicsThread
subsystem has called mlockall() when the OS supports it and thread
priority scheduling is enabled. Doing so has caused problems in third-party
applications that call the CA client library, so the functionality has been
moved to a separate routine epicsThreadRealtimeLock() which will be
called by the IOC at iocInit (unless disabled by setting the global variable
dbThreadRealtimeLock to zero).

Added dbQuietMacroWarnings control

When loading database files, macros get expanded even on comment lines. If a
comment contains an undefined macro, the load still continues but an error
message gets printed. For this release the error message has been changed to a
warning, but even this warning can be made less verbose by setting this new
variable to a non-zero value before loading the file, like this:

 var dbQuietMacroWarnings 1 iocsh
 dbQuietMacroWarnings=1 VxWorks

This was Launchpad bug
541119 [https://bugs.launchpad.net/bugs/541119].

Changes from the 3.14 branch between 3.15.3 and 3.15.4

NTP Time Provider adjusts to OS tick rate changes

Dirk Zimoch provided code that allows the NTP Time provider (used on VxWorks
and RTEMS only) to adapt to changes in the OS clock tick rate after the provider
has been initialized. Note that changing the tick rate after iocInit() is not
advisable, and that other software might still misbehave if initialized before
an OS tick rate change. This change was back-ported from the 3.15 branch.

Making IOC ca_get operations atomic

When a CA client gets data from an IOC record using a compound data type such
as DBR_TIME_DOUBLE the value field is fetched from the database in a
separate call than the other metadata, without keeping the record locked. This
allows some other thread such as a periodic scan thread a chance to interrupt
the get operation and process the record in between. CA monitors have always
been atomic as long as the value data isn’t a string or an array, but this race
condition in the CA get path has now been fixed so the record will stay locked
between the two fetch operations.

This fixes
Launchpad bug 1581212 [https://bugs.launchpad.net/epics-base/+bug/1581212],
thanks to Till Strauman and Dehong Zhang.

New CONFIG_SITE variable for running self-tests

The ‘make runtests’ and ‘make tapfiles’ build targets normally only run the
self-tests for the main EPICS_HOST_ARCH architecture. If the host is
able to execute self-test programs for other target architectures that are being
built by the host, such as when building a -debug version of the host
architecture for example, the names of those other architectures can be added to
the new CROSS_COMPILER_RUNTEST_ARCHS variable in either the
configure/CONFIG_SITE file or in an appropriate
configure/os/CONFIG_SITE.<host>.Common file to have the test
programs for those targets be run as well.

Additional RELEASE file checks

An additional check has been added at build-time for the contents of the
configure/RELEASE file(s), which will mostly only affect users of the Debian
EPICS packages published by NSLS-2. Support modules may share an install path,
but all such modules must be listed adjacent to each other in any RELEASE
files that point to them. For example the following will fail the new checks:

 AUTOSAVE = /usr/lib/epics
 ASYN = /home/mdavidsaver/asyn
 EPICS_BASE = /usr/lib/epics

giving the compile-time error

 This application's RELEASE file(s) define
 EPICS_BASE = /usr/lib/epics
 after but not adjacent to
 AUTOSAVE = /usr/lib/epics
 Module definitions that share paths must be grouped together.
 Either remove a definition, or move it to a line immediately
 above or below the other(s).
 Any non-module definitions belong in configure/CONFIG_SITE.

In many cases such as the one above the order of the AUTOSAVE and
ASYN lines can be swapped to let the checks pass, but if the
AUTOSAVE module depended on ASYN and hence had to appear
before it in the list this error indicates that AUTOSAVE should also be
built in its own private area; a shared copy would likely be incompatible with
the version of ASYN built in the home directory.

String field buffer overflows

Two buffer overflow bugs that can crash the IOC have been fixed, caused by
initializing a string field with a value larger than the field size
(Launchpad bug 1563191 [https://bugs.launchpad.net/bugs/1563191]).

Fixed stack corruption bug in epicsThread C++ API

The C++ interface to the epicsThread API could corrupt the stack on thread
exit in some rare circumstances, usually at program exit. This bug has been
fixed (Launchpad bug 1558206 [https://bugs.launchpad.net/bugs/1558206]).

RTEMS NTP Support Issue

On RTEMS the NTP Time Provider could in some circumstances get out of sync
with the server because the osdNTPGet() code wasn’t clearing its input socket
before sending out a new request. This
(Launchpad bug 1549908 [https://bugs.launchpad.net/bugs/1549908])
has now been fixed.

CALC engine bitwise operator fixes

The bitwise operators in the CALC engine have been modified to work properly
with values that have bit 31 (0x80000000) set. This modification involved
back-porting some earlier changes from the 3.15 branch, and fixes
Launchpad bug 1514520 [https://code.launchpad.net/bugs/1514520].

Fix ipAddrToAsciiAsync(): Don’t try to join the daemon thread

On process exit, don’t try to stop the worker thread that makes DNS lookups
asynchronous. Previously this would wait for any lookups still in progress,
delaying the exit unnecessarily. This was most obvious with catools (eg.
cainfo).
lp:1527636 [https://bugs.launchpad.net/bugs/1527636]

Fix epicsTime_localtime() on Windows

Simpler versions of the epicsTime_gmtime() and epicsTime_localtime()
routines have been included in the Windows implementations, and a new test
program added. The original versions do not report DST status properly. Fixes
Launchpad bug 1528284 [https://bugs.launchpad.net/bugs/1528284].

Changes made between 3.15.2 and 3.15.3

Make the NTP Time provider optional on VxWorks

Recent versions of VxWorks (sometime after VxWorks 6) provide facilities for
automatically synchronizing the OS clock time with an NTP server. The EPICS time
system used to assume that it had to provide time synchronization on VxWorks,
but now it tests for the existance of either of the two OS synchronization
threads before starting the NTP time provider. It is still possible to force the
NTP provider to be started even if the OS synchronization is running by defining
the environment variable EPICS_TS_FORCE_NTPTIME in the startup script
before loading the IOC’s .munch file. Forcing may be necessary if the VxWorks
image is not correctly configured with the IP address of a local NTP server.

Assembling files from numbered snippets

A tool has been added that assembles file snippets specified on the command line
into a single output file, with sorting and replacing/adding of snippets done
based on their file names. The build system integration requires the output file
to be specified setting COMMON_ASSEMBLIES (arch independent) or ASSEMBLIES
(created by arch), then defining the snippets for each assembly setting
*_SNIPPETS (explicitly) or *_PATTERN (searched relative to all source
directories).

Clean up after GNU readline()

If EPICS Base is built with readline support, any IOC that calls epicsExit()
from a thread other than the main thread is likely to leave the user’s terminal
in a weird state, requiring the user to run something like ‘stty sane’ to clean
it up. This release patches the readline support code to clean up automatically
by registering an epicsAtExit() routine.

Removed the last vestiges of RSET::get_value()

The IOC has not called the get_value() routine in the RSET for a very long
time, but there was still one implementation left in the event record support
code, and a structure definition for one of the original arguments to that
routine was defined in recGbl.h. Both of these have now been removed.

Changes made between 3.15.1 and 3.15.2

Raised limit on link field length in database files

The length of INP/OUT link fields in database files was limited to 79 chars
by an internal buffer size in the db file parser. This limitation will go away
completely in 3.16, and has been statically raised to 255 chars for the 3.15
series.

aoRecord raw conversion overflows

The ao record type now checks converted raw values and limits them to the
32-bit integer range before writing them to the RVAL field. Previously value
overflows relied on Undefined Behaviour which could give different results on
different platforms. The ROFF fields of the ao and ai record types are now
DBF_ULONG to allow an ROFF setting of 0x80000000 to work properly.

Changes to <top>/cfg/* files

The order in which cfg/CONFIG* and cfg/RULES* files are included from
support applications listed in the configure/RELEASE* files has been changed.
Previously these files were included in the order in which the top areas are
listed in the RELEASE file, but it makes more sense to load them in reverse
order since later entries override earlier ones in Makefiles but the release
file order is supposed to allow earlier entries to take precedence over later
ones. The same change has been made to the inclusion of the
<top>/configure/RULES_BUILD files.

Two new file types can also be provided in a module’s cfg directory. Files
named TOP_RULES* will be included by the top-level Makefile of other modules
that refer to this module; files name DIR_RULES* will be included by all
Makefiles that merely descend into lower-level directories. The cfg/RULES*
files are only included when make is building code inside the O.<arch>
directories.

The new cfg/DIR_RULES* file inclusion was designed to permit new recursive
make actions to be implemented by appending the name of the new action to the
ACTIONS variable. There must be a matching rule in one of the cfg/RULES*
files when doing this. Similar rules may also be defined in the cfg/TOP_RULES*
and/or cfg/DIR_RULES* files, but these should only state prerequisites and not
directly provide commands to be executed.

Build rules for RTEMS GESYS modules

RTEMS target builds can now be configured to make GESYS modules by changing
the USE_GESYS=NO setting in the file
configure/os/CONFIG_SITE.Common.RTEMS to YES.

Added Make variables for command-line use

The following variables are now used during the build process, reserved for
setting on the command-line only (Makefiles should continue to use the
USR_ equivalents):

	CMD_INCLUDES

	CMD_CPPFLAGS

	CMD_CFLAGS

	CMD_CXXFLAGS

	CMD_LDFLAGS

	CMD_DBFLAGS

	CMD_DBDFLAGS

	CMD_REGRDDFLAGS

	CMD_ARFLAGS

For example:

 make CMD_INCLUDES=/opt/local/include CMD_LDFLAGS=-L/opt/local/lib

Enhanced API for asTrapWrite listeners

External software such as the CA Put Logging module that registers a listener
with the asTrapWrite subsystem was not previously given access to the actual
data being sent by the CA client. In most cases this was not a problem as the
listener can look at the field being modified both before and after the
operation, but if the put processes the record which immediately overwrites the
new value, the client’s value cannot be observed.

This release adds three fields to the asTrapWriteMessage structure that is
passed to the listener routines. These new fields provide the CA data type, the
number of array elements, and a pointer to the source data buffer. This change
is completely backwards compatible with listener code written against the
original API. The new API can be detected at compile-time as follows:

 #include "asLib.h"

 /* ... */

 #ifdef asTrapWriteWithData
 /* Enhanced API */
 #endif

Use of PATH_FILTER in Makefiles deprecated

The PATH_FILTER variable was being called to convert forward slashes
/ in file paths into pairs of backward slashes
\\ on Windows architectures. This has never been strictly
necessary, and was added about 10 years ago to get around some short-comings in
Windows tools at the time. All uses of PATH_FILTER in Base have now been
removed; the definition is still present, but will result in a warning being
printed if it is ever used.

Using msi for dependencies

To reduce confusion the msi program has been modified to allow the generation of
dependency rules by adding support for a -D option, and changing the commands
in RULES.Db to use this option instead of the mkmf.pl script. The new build
rules will not work with old versions of the msi program, so the command
variable name used in the rules has been changed from MSI to MSI3_15. Sites
that use a modified version of msi must provide support for both the -D and
-o outfile options, and should then point the MSI3_15 variable in their
applications’ CONFIG_SITE files to that updated executable.

Changes made between 3.15.0.2 and 3.15.1

epicsStrnEscapedFromRaw() and epicsStrnRawFromEscaped()

These routines have been rewritten; the previous implementations did not
always behave exactly as specified.

Shared Library Versions

On architectures that can support it, the shared library version number for
libraries provided with Base has had the third component of the EPICS version
number added to it, thus libCom.so.3.15.1 instead of libCom.so.3.15. Windows
can only support two components to its internal product version number, and the
Darwin bug that external shared libraries were being built using the EPICS
version number has been fixed.

Hooking into dbLoadRecords

A function pointer hook has been added to the dbLoadRecords() routine, to allow
external modules such as autosave to be notified when new records have been
loaded during IOC initialization. The hook is called dbLoadRecordsHook and
follows the model of the recGblAlarmHook pointer in that modules that wish to
use it must save the current value of the pointer before installing their own
function pointer, and must call the original function from their own routine.

The hook is activiated from the dbLoadRecords() routine and gets called only
after a database instance file has been read in without error. Note that the
dbLoadTemplates() routine directly calls dbLoadRecords() so this hook also
provides information about instantiated database templates. It is still possible
to load record instances using dbLoadDatabase() though, and doing this will
not result in the hook routines being called.

Code to use this hook should look something like this:

 #include "dbAccessDefs.h"

 static DB_LOAD_RECORDS_HOOK_ROUTINE previousHook;

 static void myRoutine(const char* file, const char* subs) {
 if (previousHook)
 previousHook(file, subs);

 /* Do whatever ... */
 }

 void myInit(void) {
 static int done = 0;

 if (!done) {
 previousHook = dbLoadRecordsHook;
 dbLoadRecordsHook = myRoutine;
 done = 1;
 }
 }

As with many other parts of the static database access library there is no
mutex to protect the function pointer. Initialization is expected to take place
in the context of the IOC’s main thread, from either a static C++ constructor or
an EPICS registrar routine.

Changes made between 3.15.0.1 and 3.15.0.2

New iocshLoad command

A new command iocshLoad has been added to iocsh which executes a
named iocsh script and can also set one or more shell macro variables at the
same time, the values of which will be forgotten immediately after the named
script finishes executing. The following example shows the syntax:

 iocshLoad "serial.cmd", "DEV=/dev/ttyS0,PORT=com1,TYPE=RS485"
 iocshLoad "radmon.cmd", "PORT=com1,ADDR=0"

Support routines for 64-bit integers

The libCom library now provides support for 64-bit integer types on all
supported architectures. The epicsTypes.h header file defines epicsInt64 and
epicsUInt64 type definitions for both C and C++ code. The epicsStdlib.h header
also declares the following for parsing strings into the relevent sized integer
variables: Functions epicsParseLLong(), epicsParseULLong() with related macros
epicsScanLLong() and epicsScanULLong(), and the functions epicsParseInt64()
and epicsParseUInt64(). Use the first two functions and the macros for long long
and unsigned long long integer types, and the last two functions for the
epicsInt64 and epicsUInt64 types. Note that the latter can map to the types long
and unsigned long on some 64-bit architectures such as linux-x86_64, not to the
two long long types.

This version does not provide the ability to define 64-bit record fields, the
use of the 64-bit types in the IOC database will come in a later release of
EPICS Base.

Full support for loadable support modules

Apparently later versions of Base 3.14 permitted support modules to be loaded
from a shared library at runtime without the IOC having been linked against that
shared library; the registerRecordDeviceDriver.pl program would accept a partial
DBD file containing just the entries needed for the library and generate the
appropriate registration code. In 3.15 however the registerRecordDeviceDriver.pl
program was replaced by one using the new DBD file parser, and in this a device
support entry would only be accepted after first loading the record type that it
depended on.

The parser has been modified to accept device entries without having seen the
record type first, although a warning is given when that happens. To remove the
warning the DBD file can provide a record type declaration instead (no fields
can be defined, so the braces must be empty), before the device() entry. The
result will generate the correct registration code for the device entry without
including anything for any merely declared record types. The generated code can
be linked into a shared library and loaded by an IOC at runtime using dlload.

Parallel callback threads

The general purpose callback facility can run multiple parallel callback
threads per priority level. This makes better use of SMP architectures (e.g.
processors with multiple cores), as callback work - which includes second
stage processing of records with asynchronuous device support and I/O
scanned processing - can be distributed over the available CPUs.

Note that by using parallel callback threads the order of scan callback
requests in the queue is not retained. If a device support needs to be
informed when scanIoRequest processing has finished, it should use the new
scanIoSetComplete() feature to add a user function that will be called after
the scanIoRequest record processing has finished.

Parallel callback threads have to be explicitly configured, by default
the IOC keeps the old behavior of running one callback thread per priority.

Merge MMIO API from devLib2

Added calls to handle 8, 16, and 32 bit Memory Mapped I/O reads and writes.
The calls added include X_iowriteY() and X_ioreadY()
where X is nat (native), be or le, and Y is 16 or 32.
Also added are ioread8() and iowrite8().

Added optional dbServer API to database

A server layer that sits on top of the IOC database may now register itself
as such by calling dbRegisterServer() and providing optional routines
that other components can use. The initial purpose of this API allows the Trace
Processing implementation in dbProcess() to identify a client that
causes a record to process when TPRO is set.

To support the client identification, the server provides a routine that
returns that identity string when called by one of its own processing
threads.

Concatenated database definition files

A series of database definition (dbd) files can now be concatenated during
the build process into a newly-created dbd file with result being installed into
$(INSTALL_LOCATION)/dbd without expanding it.

The following lines in an EPICS Makefile will create a file name.dbd in the
O.Common build directory containing the contents of file1.dbd followed by
file2.dbd then file3.dbd. The new file will then be installed into
$(INSTALL_LOCATION)/dbd without expanding any of its include statements.

 DBDCAT += name.dbd
 name_DBD += file1.dbd file2.dbd file3.dbd

The source files file1.dbd, file2.dbd and file3.dbd may be created by the
current Makefile, be located in the parent directory or any other directory in
the SRC_DIRS list, be specified by their full pathname, exist in the install
dbd directory, or be found in any dbd directory linked from the application’s
RELEASE files.

Posix: Drop SCHED_FIFO before exec() in child process

If Base is compiled with USE_POSIX_THREAD_PRIORITY_SCHEDULING = YES
in configure/CONFIG_SITE or related files, the Posix implementation of the
libCom osiSpawnDetachedProcess() routine will switch the child process
to use the normal SCHED_OTHER (non real-time) scheduler before executing the
named executable program. If it needs to use the real-time scheduler the new
program can request that for itself.

Posix: Lock all memory when running with FIFO scheduler

On Posix systems, an IOC application’s ability to meet timing deadlines is
often dependent on its ability to lock part or all of the process’s virtual
address space into RAM, preventing that memory from being paged to the swap
area. This change will attempt to lock the process’s virtual address space into
RAM if the process has the ability to run threads with different priorities. If
unsuccessful, it prints an message to stderr and continues.

On Linux, one can grant a process the ability to run threads with different
priorities by using the command ulimit -r unlimited. To use the
FIFO scheduler for an IOC, use a command like this:

 chrt -f 1 softIoc -d test.db

On Linux, one can grant a process the ability to lock itself into memory
using the command ulimit -l unlimited. These limits can also be
configured on a per user/per group basis by changing /etc/security/limits.conf
or its equivalent.

A child process created via fork() normally inherits its parent’s resource
limits, so a child of a real-time soft-IOC will get its parent’s real-time
priority and memlock limits. The memory locks themselves however are not
inherited by child processes.

Implement EPICS_CAS_INTF_ADDR_LIST in rsrv

The IOC server can now bind to a single IP address (and optional port number)
read from the standard environment parameter EPICS_CAS_INTF_ADDR_LIST.
Additional addresses included in that parameter after the first will be ignored
and a warning message displayed at iocInit time.

alarmString.h deprecated again

The string arrays that provide string versions of the alarm status and
severity values have been moved into libCom and the header file that used to
instanciate them is no longer required, although a copy is still provided for
backwards compatibility reasons. Only the alarm.h header needs to be included
now to declare the epicsAlarmSeverityStrings and epicsAlarmConditionStrings
arrays.

General purpose thread pool

A general purpose threaded work queue API epicsThreadPool is added.
Multiple pools can be created with controllable priority and number
of worker threads. Lazy worker startup is supported.

Database field setting updates

A database (.db) file loaded by an IOC does not have to repeat the record
type of a record that has already been loaded. It may replace the first
parameter of the record(type, name) statement with an asterisk
character inside double-quotes, "*" instead. Thus the following is a
legal database file:

 record(ao, "ao1") {}
 record("*", "ao1") {
 field(VAL, 10)
 }

Note that database configuration tools will not be expected to have to
understand this syntax, which is provided for scripted and hand-coded database
and template instantiation only. Setting the IOC’s dbRecordsOnceOnly
flag also makes this syntax illegal, since its purpose is to prevent
multiply-defined records from being collapsed into a single instance.

Added echo command to iocsh

The single argument string may contain escaped characters, which will be
translated to their raw form before being printed (enclose the string in quotes
to avoid double-translation). A newline is always appended to the output, and
output stream redirection is supported.

Added macro EPICS_UNUSED to compilerDependencies.h

To prevent the compiler from warning about a known-unused variable, mark it
with the macro EPICS_UNUSED. On gcc and clang this will expand to
__attribute__((unused)) to prevent the warning.

User specified db substitution file suffix

Per Dirk Zimoch’s suggestion, a user specified db substitution file suffix is
now allowed by setting the variable SUBST_SUFFIX in a configuration directory
CONFIG_SITE file or in a Makefile before the include $(TOP)/configure/RULES
line. The default for SUBST_SUFFIX is .substitutions

NTP Time Provider adjusts to OS tick rate changes

Dirk Zimoch provided code that allows the NTP Time provider (used on VxWorks
and RTEMS only) to adapt to changes in the OS clock tick rate after the provider
has been initialized. Note that changing the tick rate after iocInit() is not
advisable, and that other software might still misbehave if initialized before
an OS tick rate change.

Added newEpicsMutex macro

Internal C++ uses of new epicsMutex() have been replaced with a new
macro which calls a new constructor, passing it the file name and line number of
the mutex creation code. C code that creates mutexes has been using a similar
macro for a long time, but there was no equivalent constructor for the C++
wrapper class, so identifying a specific mutex was much harder to do.

Post DBE_PROPERTY events automatically

A new record field attribute prop(YES) has been added to identify fields
holding meta-data. External changes to these fields will cause a CA monitor
event to be sent to all record subscribers who have asked for DBE_PROPERTY
updates. Meta-data fields have been marked for all Base record types.

errlogRemoveListener() routine changed

Code that calls errlogRemoveListener(myfunc) must be modified to use
the new, safer routine errlogRemoveListeners(myfunc, &pvt) instead.
The replacement routine takes a second argument which must be the same private
pointer that was passed to errlogAddListener() when adding that
listener. It also deletes all matching listeners (hence the new plural name) and
returns how many were actually deleted, whereas the previous routine only
removed the first listener that matched.

Simplified generation of .dbd files

The Perl script makeIncludeDbd.pl has been removed and the rules
that created an intermediate xxxInclude.dbd file from the
Makefile variable xxx_DBD have been modified to generate the target
xxx.dbd file directly. This should simplify applications that
might have had to provide dependency rules for the intermediate files in 3.15.
Applications which provide their own xxxInclude.dbd source file
will continue to have it expanded as before.

New Undefined Severity field UDFS

A new field has been added to dbCommon which configures the alarm severity
associated with the record being undefined (when UDF=TRUE). The default value is
INVALID so old databases will not be affected, but now individual records can be
configured to have a lower severity or even no alarm when undefined. Be careful
when changing this on applications where the IVOA field of output records is
used, IVOA still requires an INVALID severity to trigger value replacement.

New build target tapfiles

This new make target runs the same tests as the runtests target, but
instead of summarizing or displaying the output for each test script it creates
a .tap file inside the architecture build directory which contains the
detailed test output. The output file can be parsed by continuous integration
packages such as Jenkins [http://www.jenkins-ci.org/] to show the
test results.

Array field double-buffering

Array data can now be moved, without copying, into and out of the VAL field
of the waveform, aai, and aao record types by replacing the pointer in BPTR.
The basic rules which device support must follow are:

	BPTR, and the memory it is currently pointing to, can only be accessed
while the record is locked.

	NELM may not be changed; NORD should be updated whenever the number of
valid data elements changes.

	When BPTR is replaced it must always point to a block of memory large
enough to hold the maximum number of elements, as given by the NELM and
FTVL fields.

Spin-locks API added

The new header file epicsSpin.h adds a portable spin-locks API which is
intended for locking very short sections of code (typically one or two lines of
C or C++) to provide a critical section that protects against race conditions.
On Posix platforms this uses the pthread_spinlock_t type if it’s available and
the build is not configured to use Posix thread priorities, but otherwise it
falls back to a pthread_mutex_t. On the UP VxWorks and RTEMS platforms the
implementations lock out CPU interrupts and disable task preemption while a
spin-lock is held. The default implementation (used when no other implementation
is provided) uses an epicsMutex. Spin-locks may not be taken recursively, and
the code inside the critical section should be short and deterministic.

Improvements to aToIPAddr()

The libCom routine aToIPAddr() and the vxWorks implementation of the
associated hostToIPAddr() function have been modified to be able to look up
hostnames that begin with one or more digits. The epicsSockResolveTest program
was added to check this functionality.

mbboDirect and mbbiDirect records

These record types have undergone some significant rework, and will behave
slightly differently than they did in their 3.14 versions. The externally
visible changes are as follows:

mbbiDirect

	If the MASK field is set in a database file, it will not be over-written
when the record is initialized. This allows non-contiguous masks to be set,
although only the device support actually uses the MASK field.

	If process() finds the UDF field to be set, the record will raise a
UDF/INVALID alarm.

mbboDirect

	If the MASK field is set in a database file, it will not be over-written
when the record is initialized. This allows non-contiguous masks to be set,
although only the device support actually uses the MASK field.

	After the device support’s init_record() routine returns during record
initialization, if OMSL is “supervisory” and UDF is clear the fields
B0-BF will be set from the current VAL field.

	When a put to the OMSL field sets it to “supervisory”, the fields
B0-BF will be set from the current VAL field. This did not used to happen,
the individual bit fields were previously never modified by the record.
Note that this change may require some databases to be modified, if they
were designed to take advantage of the previous behavior.

Redirection of the errlog console stream

A new routine has been added to the errlog facility which allows the console
error message stream to be redirected from stderr to some other already open
file stream:

 int errlogSetConsole(FILE *stream);

The stream argument must be a FILE* pointer as returned by fopen() that is
open for output. If NULL is passed in, the errlog thread’s stderr output stream
will be used instead. Note that messages to the console can be disabled and
re-enabled using the eltc routine which is also an iocsh command, but there is
no iocsh command currently provided for calling errlogSetConsole().

Add cleanup subroutine to aSub record

An aSub routine may set the CADR field with a function pointer which will be
run before a new routine in the event that a change to the SNAM field changes
the record’s process subroutine.

This can be used to free any resources the routine needs to allocate. It can
also be used to determine if this is the first time this routine has been called
by this record instance. The CADR field is set to NULL immediately after the
routine it points to is called.

Example:

 void cleanup(aSubRecord* prec) {
 free(prec->dpvt);
 prec->dpvt = NULL;
 }

 long myAsubRoutine(aSubRecord* prec) {
 if (!prec->cadr) {
 /* check types of inputs and outputs */
 if (prec->ftva != menuFtypeDOUBLE)
 return 1; /* oops */

 dpvt = malloc(42);
 prec->cadr = &cleanup;
 }

 /* normal processing */
 }
 epicsRegisterFunction(myAsubRoutine);

Sequence record enhancements

The sequence record type now has 16 link groups numbered 0 through 9 and A
through F, instead of the previous 10 groups numbered 1 through 9 and A. The
changes to this record are directly equivalent to those described below for the
fanout record. The fields OFFS and SHFT have been added and operate on the SELN
value exactly the same way. The result is backwards compatible with the 3.14
version of the sequence record as long as none of the new fields are modified
and the application does not rely on the SOFT/INVALID alarm that was generated
when the selection number exceeded 10. The record also now posts monitors on the
SELN field at the end of the sequence if its value changed when read through the
SELL link.

Fanout record enhancements

The fanout record type now has 16 output links LNK0-LNK9 and LNKA-LNKF, plus
two additional fields which make the result backwards compatible with 3.14
databases, but also allow the link selection to be shifted without having to
process the SELN value through a calc or calcout record first.

Previously there was no LNK0 field, so when SELM is “Mask” bit 0 of SELN
controls whether the LNK1 link field was activated; bit 1 controls LNK2 and so
on. When SELM is “Specified” and SELN is zero no output link would be
activated at all; LNK1 gets activated when SELN is 1 and so on. Only 6 links
were provided, LNK1 through LNK6. The updated record type maintains the original
behavior when the new fields are not configured, except that the SOFT/INVALID
alarm is not generated when SELN is 7 through 15.

The update involved adding a LNK0 field, as well as fields LNK7 through LNK9
and LNKA through LNKF. To add flexibility and maintain backwards compatibility,
two additional fields have been added:

	OFFSThis field holds a signed offset which is added to SELN to select which link
to activate when SELM is “Specified”. If the resulting value is outside the
range 0 .. 15 the record will go into a SOFT/INVALID alarm state. The default
value of OFFS is zero, so if it is not explicitly set and SELN is 1 the LNK1
link will be activated.

	SHFTWhen SELM is “Mask” the signed field SHFT is used to shift the SELN
value by SHFT bits (positive means right-wards, values outside the range -15 ..
15 will result in a SOFT/INVALID alarm), before using the resulting bit-pattern
to control which links to activate. The default value is -1, so if SHFT is not
explicitly set bit 0 of SELN will be used to control whether LNK1 gets
activated.

The record also now posts monitors on the SELN field if it changes as a
result of record processing (i.e. when read through the SELL link).

Deleted Java build rules

Java has its own build systems now, so we’ve deleted the rules and associated
variables from Base, although they might get added to the Extensions build rules
for a while in case anyone still needs them.

Changes made between 3.14.x and 3.15.0.1

Application clean rules

The clean Makefile target has changed between a single-colon rule
and a double-colon rule more than once in the life of the EPICS build rules, and
it just changed back to a single-colon rule, but now we recommend that
applications that wish to provide a Makefile that is backwards compatible with
the 3.14 build rules use the construct shown below. The 3.15 rules now support
a variable called CLEANS to which a Makefile can add a list of files to
be deleted when the user does a make clean like this:

 CLEANS += <list of files to be cleaned>

 ifndef BASE_3_15
 clean::
 $(RM) $(CLEANS)
 endif

The conditional rule provides compatibility for use with the 3.14 build
system.

MSI included with Base

An enhanced version of the Macro Substitution and Include program “msi”
has been included with Base. Both this new version of msi and the IOC’s
dbLoadTemplates command now support setting global macros in
substitution files, and dbLoadTemplates can now take a list of global
macro settings as the second argument on its command line. The substitution file
syntax is documented in the Application Developers Guide.

Cross-builds targeting win32-x86-mingw

Some Linux distributions now package the MinGW cross-compiler which makes it
possible to cross-build the win32-x86-mingw target from a linux-x86 host. Build
configuration files for this combination are now included; adjust the settings
in configure/os/CONFIG_SITE.linux-x86.win32-x86-mingw and add win32-x86-mingw to
the CROSS_COMPILER_TARGET_ARCHS variable in configure/CONFIG_SITE or in
configure/os/CONFIG_SITE.linux-x86.Common.

Architecture win32-x86-cygwin Removed

The ability to compile non-cygwin binaries using the Cygwin build tools is no
longer supported by current versions of Cygwin, so this architecture has been
removed. Use the MinWG tools and the win32-x86-mingw architecture instead.

RTEMS and VxWorks Test Harnesses

The original libCom test harness has been renamed libComTestHarness,
and two additional test harnesses have been created dbTestHarness and
filterTestHarness which are all built for RTEMS and vxWorks targets.
The new ones include tests in src/ioc/db/test and src/std/filters/test.

Running the new tests requires additional .db and .dbd files to be loaded at
runtime, which can be found in the relevant source directory or its O.Common
subdirectory. If the target can access the Base source tree directly it may be
simplest to cd to the relevant source directory before running the test. If not,
the files needed are listed in the generated ‘testspec’ file found in the
associated build (O.arch) directory.

For RTEMS users the current directory is determined in a BSP specific way.
See rtems_init.c and setBootConfigFromNVRAM.c in src/libCom/RTEMS.

New API to hook into thread creation

A hook API has been added allowing user-supplied functions to be called
whenever a thread starts. The calls are made from the thread’s context,
and can be used to control additional thread properties not handled inside
EPICS base, e.g. setting the scheduling policy or CPU affinity (on SMP
systems).

The API also supports a mapping operation, calling a user-supplied function
for every thread that is currently running.

New scan rate units

Scan rates defined in the menuScan.dbd file may now be specified in seconds,
minutes, hours or Hertz, and plural time units will also be accepted (seconds
are used if no unit is mentioned in the choice string). At iocInit each
scan rate is compared with the OS’s clock tick and a warning printed if the
rate is too fast or likely to be more than 10% different to the requested rate.
For example the rates given below are all valid, although non-standard (the
default menuScan choices that come with Base have not been changed):

 menu(menuScan) {
 choice(menuScanPassive, "Passive")
 choice(menuScanEvent, "Event")
 choice(menuScanI_O_Intr, "I/O Intr")
 choice(menuScan1_hour, "1 hour")
 choice(menuScan0_5_hours, "0.5 hours")
 choice(menuScan15_minutes, "15 minutes")
 choice(menuScan5_minutes, "5 minutes")
 choice(menuScan1_minute, "1 minute")
 choice(menuScan10_seconds, "10 seconds")
 choice(menuScan5_seconds, "5 seconds")
 choice(menuScan2_seconds, "2 seconds")
 choice(menuScan1_second, "1 second")
 choice(menuScan2_Hertz, "2 Hertz")
 choice(menuScan5_Hertz, "5 Hertz")
 choice(menuScan10_Hertz, "10 Hz")
 }

Alarm filtering added to input record types

The record types ai, calc, longin and mbbi have a new alarm filter added to
them. This provides a low-pass filter that can be used to delay the reporting of
alarms caused by the input level passing the HIGH, HIHI, LOW or LOLO values. The
filter is controlled with a new AFTC field that sets the filter’s time constant.
The default value for this field is zero, which keeps the record’s original
alarm behaviour.

The record must be scanned often enough for the filtering action to work
effectively and the alarm severity can only change when the record is processed,
but that processing does not have to be regular; the filter uses the time since
the record last processed in its calculation. Setting AFTC to a positive number
of seconds will delay the record going into or out of a minor alarm severity or
from minor to major severity until the input signal has been in that range for
that number of seconds.

Post events on Waveform record’s NORD field

When the record type or device support modify the NORD field of a waveform
record, the record support code now posts DBE_VALUE and DBE_LOG events for that
field, signaling the array length change to any client monitoring the NORD
field.

Attributes of Non-VAL Fields

Non-VAL fields now report meaningful information for precision, units,
graphic limits, control limits, and alarm limits instead of simply using
PREC, EGU, HOPR, LOPR, DRVL, DRVH, HIHI, HIGH, LOW, and LOLO. All delay
fields have a default precision of 2 digits, units “s” and control limits
of 0 to 100,000 seconds (these precision and limit values can be changed
for each record type as a whole at runtime by updating a registered global
variable). Input fields like A-L of the calc record read their metadata
from the corresponding INPn link if possible.

epicsStdioRedirect.h merged into epicsStdio.h

The definitions from the header file epicsStdioRedirect.h have been moved
into epicsStdio.h so all calls to printf(), puts() and putchar() in files that
include that OSI header will now be subject to stdout redirection. In past
releases (3.14.7 and later) it was necessary to request the redirection support
by including the epicsStdioRedirect.h header file. The header file is still
provided, but now it just includes epicsStdio.h.

Named Soft Events

Soft events can now be given meaningful names instead of just using the
numbers 1-255. The EVNT field is now a DBF_STRING. The post_event() API
is now deprecated but still works. It should be replaced by code that in advance
looks up the EVNTPVT event handle associated with the named event by
calling eventNameToHandle(char *), and when that event occurs passes
that handle to the new postEvent(EVNTPVT) routine (which may be called
from interrupt level). A new iocsh command postEvent name will
trigger a named event from the command-line or a startup script (on vxWorks the
expression postEvent(eventNameToHandle("name")) must be used
instead though).

Parallel Builds

As EPICS sites get computers with more CPUs they report additional bugs in our
parallel build rules. Various issues have been fixed by separating out the build
rules that generate dependency (.d) files, ensuring that they are constructed at
the appropriate time in the build.

These rule changes can cause additional warning messages to appear when building
support modules. Where an application provides its own Makefile rules it may now
have to add rules to construct an associated dependency file. In many cases
though the change needed is just to replace a dependency for a
target$(OBJ) with the target$(DEP) so this

 myLib$(OBJ): myLib_lex.c

becomes

 myLib$(DEP): myLib_lex.c

To debug build issues associated with dependency files, use the command
make --debug=m which tells GNUmake to display information about what it is doing
during the first pass when it updates its makefiles.

Removed tsDefs.h

The deprecated tsDefs API was provided for 3.13 compatibility only, and has now
been removed. Convert any remaining code that used it to call the epicsTime API
instead.

Changes to epicsVersion.h

The two macros EPICS_UPDATE_LEVEL and EPICS_CVS_SNAPSHOT have
been deleted from the epicsVersion.h file; they were deprecated in R3.14 and can
be replaced with EPICS_PATCH_LEVEL and EPICS_DEV_SNAPSHOT
respectively.

A new pair of macros has been added to make version number comparisons easier.
Code that will not work with a version of Base before 3.15.0 can now be
written like this to prevent it from compiling:

 #if defined(VERSION_INT) && EPICS_VERSION_INT < VERSION_INT(3,15,0,0)
 # error EPICS Base R3.15.0 or later is required
 #endif

Added support for iocLogPrefix

Added a iocLogPrefix command to iocsh. This adds a
prefix to all messages from this IOC (or other log client) as they get sent to the
iocLogServer. This lets sites use the fac=<facility> syntax for
displaying the facility, process name etc. in log viewers like the
cmlogviewer.

Reworked the epicsEvent C & C++ APIs

	Renamed the enum epicsEventWaitStatus to epicsEventStatus

	Defined epicsEventWaitStatus as a macro for epicsEventStatus

	Renamed epicsEventWaitOk to epicsEventOk

	Renamed epicsEventWaitError to epicsEventError

	Defined epicsEventWaitOK and epicsEventWaitError as macros

	Added epicsEventTrigger(id) which triggers an event and returns OK or an
error status if the underlying OS primitives report an error

	Added epicsEventMustTrigger(id) which halts on error

	Defined epicsEventSignal(id) as a macro for epicsEventMustTrigger(id)

	Added a new C++ method epicsEvent::trigger() which throws an
epicsEvent::invalidSemaphore in the event of an error

	epicsEvent::signal() makes an inline call to epicsEvent::trigger()

	epicsEventWait() and epicsEventWaitWithTimeout() now return an error
status if the underlying OS primitives report an error

	All the epicsEventMust…() routines are now implemented in the common
libCom/osi/epicsEvent.cpp source file, and call cantProceed() instead of
mis-using assert()

	Implemented epicsEventShow() on Posix

	Win32: Removed all epicsShareAPI decorations

Enabled histogram record type

The histogram record was not included in the base.dbd file in any 3.14 release,
but has now been added along with its associated soft device support. The build
system now generates the list of all the record.dbd files in base automatically
in src/std/rec/Makefile.

Reorganization of src/

Reorganization of subdirectories of src/ to better represent the relation
between different parts as described in the following table.

This change also allows the number of libraries built to be reduced to:
libCap5.so, libca.so, libdbCore.so, libdbStaticHost.so,
libCom.so, libcas.so, libdbRecStd.so, and libgdd.so

Component	Dependency	Library name	Description
——————	—————–	————	—————————————————–
src/tools			Build system scripts
src/libCom	src/tools	Com	Utility routines and OS-independant API
src/template	src/tools		User application templates (e.g. makeBaseApp)
src/ca/client	src/libCom	ca	Channel Access client
src/ca/legacy/gdd	src/ca/client	gdd	Generic data layer for PCAS
src/ca/legacy/pcas	src/ca/legacy/gdd	cas	Portable Channel Access Server
src/ioc	src/ca	dbCore	Core database processing functions
src/std	src/ioc	dbRecStd	Standard records, soft device support and the softIoc

In order to better reflect these relations the following
directories and files were moved as described:

Relocations

Category | Previous | New
:— | :— | :—
libCom | srcRTEMS | src/libCom/RTEMS
| | src/toolsComm/flex | src/libCom/flex |
| | src/toolsComm/antelope | src/libCom/yacc
| | src/dbStatic/alarm.h | src/libCom/misc
| | …/alarmString.h | src/libCom/misc
IOC Core Components | src/bpt | src/ioc/bpt
| | src/db | src/ioc/db
| | src/dbStatic | src/ioc/dbStatic
| | src/dbtools | src/ioc/dbtemplate
| | src/misc | src/ioc/misc
| | src/registry | src/ioc/registry
| | src/rsrv | src/ioc/rsrv 1
Standard Record Definitions | src/dev/softDev | src/std/dev
| | src/rec | src/std/rec
| | src/softIoc | src/std/softIoc
Channel Access | src/ca | src/ca/client
| | src/catools | src/ca/client/tools
| | src/cap5 | src/ca/client/perl
| | src/gdd | src/ca/legacy/gdd
| | src/cas | src/ca/legacy/pcas
| | src/excas | src/ca/legacy/pcas/ex
User Templates | src/makeBaseApp | src/template/base
| | src/makeBaseExt | src/template/ext
Dispersed | src/util 2 | src/ca/client
| | | src/ca/client/test
| | | src/libCom/log
| | src/as 3 | src/libCom/as
| | | src/ioc/as

1
RSRV is built as part of dbCore due to its tight (bidirectional) coupling
with the other database code.

2
The contents for src/util/ moved to three locations. The caRepeater init script
was moved to src/ca/client/. ca_test is now in src/ca/client/test/.
The iocLogServer was moved into the same directory (src/libCom/log) as
the log client code.

3
The Access Security code has been divided, with the parts not related to the
database (lexer/parser and trap registration) becoming part of libCom.
The remaining components are included in the dbCore library

Moved src/RTEMS/base directory

These files are now found under src/RTEMS.

Removed 3.13 compatibility

Removed the 3.13 <top>/config directory and build compatibility rules and
variables, and various conversion documents.

Record Reference Documentation

The documentation below for the record types and menus included with Base was
converted from the old EPICS Wiki pages and updated. This list only includes the
record types supplied with Base. The first two links below are to an external
website where these original reference chapters are now being published.

	Introduction to EPICS [https://docs.epics-controls.org/en/latest/guides/EPICS_Intro.html]

	Process Database Concepts [https://docs.epics-controls.org/en/latest/guides/EPICS_Process_Database_Concepts.html]

	Fields Common to All Record Types

	Fields Common to Input Record Types

	Fields Common to Output Record Types

Record Types

	Analog Array Input Record (aai)

	Analog Array Output Record (aao)

	Analog Input Record (ai)

	Analog Output Record (ao)

	Array Subroutine Record (aSub)

	Binary Input Record (bi)

	Binary Output Record (bo)

	Calculation Output Record (calcout)

	Calculation Record (calc)

	Compression Record (compress)

	Data Fanout Record (dfanout)

	Event Record (event)

	Fanout Record (fanout)

	Histogram Record (histogram)

	Long Input Record (longin)

	Long Output Record (longout)

	Long String Input Record (lsi)

	Long String Output Record (lso)

	Multi-Bit Binary Input Direct Record (mbbiDirect)

	Multi-Bit Binary Input Record (mbbi)

	Multi-Bit Binary Output Direct Record (mbboDirect)

	Multi-Bit Binary Output Record (mbbo)

	Permissive Record (permissive)

	Printf Record (printf)

	Select Record (sel)

	Sequence Record (seq)

	State Record (state)

	String Input Record (stringin)

	String Output Record (stringout)

	Sub-Array Record (subArray)

	Subroutine Record (sub)

	Waveform Record (waveform)

Menu Definitions

	Alarm Severity Menu

	Alarm Status Menu

	Analog Conversions Menu

	Field Type Menu

	Invalid Value Output Action Menu

	Output Mode Select Menu

	Process at iocInit Menu

	Post Monitors Menu

	Priority Menu

	Scan Menu

	Simulation Mode Menu

	Yes/No Menu

Corrections and Updates

Corrections to these documents can be submitted as patch files to the EPICS core
developers, or as merge requests or pull requests to the 3.15 branch of Base.
The document sources can be found in the src/std/rec and src/ioc/db
directories in files with extension .dbd.pod. The documentation source format
is a combination of the EPICS DBD file format with an extended version of Perl’s
POD (plain old documentation); run perldoc pod for details of POD.

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

